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a b s t r a c t

East African paleoenvironments are highly variable, marked by extreme fluctuations in moisture
availability, which has far-reaching implications for the origin, evolution and dispersal of Homo sapiens
in and beyond the region. This paper presents results from a pilot core from the Chew Bahir basin in
southern Ethiopia that records the climatic history of the past 45 ka, with emphasis on the African
Humid Period (AHP, w15e5 ka calBP). Geochemical, physical and biological indicators show that Chew
Bahir responded to climatic fluctuations on millennial to centennial timescales, and to the precessional
cycle, since the Last Glacial Maximum. Potassium content of the sediment appears to be a reliable
proxy for aridity, showing that Chew Bahir reacted to the insolation-controlled humidity increase of
the AHP with a remarkably abrupt onset and a gradual termination, framing a sharply defined arid
phase (w12.8e11.6 ka calBP) corresponding to the Younger Dryas chronozone. The Chew Bahir record
correlates well with low- and high-latitude paleoclimate records, demonstrating that the site
responded to regional and global climate changes.

� 2012 Elsevier Ltd and INQUA. All rights reserved.
1. Introduction

Numerous hypotheses claim that there is a link between climate
change and human evolution, since climate change provides the
necessary environmental pressure for natural selection and pop-
ulation expansion. Various ideas have been put forward about the
causes of evolutionary change in the source region of anatomically
modern humans (AMH), including climatic variability causing
resource stress (Potts, 1998), and adaptation to a gradual shift to
a drier environment (Vrba, 1985). Current evidence points to East
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Africa as the origin of modern humans and thus supports the Out of
Africa II or Mitochondrial Eve theory (Stringer, 2003). Much pale-
ontological and paleoanthropological research is focused on the
Ethiopian Rift and the Afar, because the oldest known Homo sapiens
fossils, dated w200 ka were found in the Lower Omo Valley
(McDougall et al., 2005; Carto et al., 2009), and at Herto, in the Afar
(White et al., 2003).

Current debate concerns whether the shift towards hyper-arid
climate conditions during Heinrich event 9 (H9; 105 ka), resulting
in limited resources and water availability, compelled AMH to
expand beyond Africa. Environmental changes linked to orbitally-
driven dryewet alternations are thought to have favored evolu-
tionary innovation (Behrensmeyer, 2006; Trauth et al., 2010), and
forced the expansion of H. sapiens into SW Asia in several intervals
at around 100 ka (Ambrose, 1998; Oppenheimer, 2009; Armitage
et al., 2011). Whether dry conditions were the driving factor
(Carto et al., 2009), plus lowered sea level opening a corridor into
SW Asia, or whether it was the onset of wet conditions between
w120 and 110 ka that allowed dispersal into the Arabian coastal
desert (Castañeda et al., 2009), is much debated. To understand the
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causeeeffect relationships among climate, environment and
human evolution in East Africa, it is of key importance to recon-
struct the timing and mechanisms of past environmental changes.

The magnitude, timing, spatial expression and causes of
wetedry cycles in East Africa are not well understood. The most
recent of these wet episodes, the African Humid Period (AHP,
w15e5 ka), demonstrates the central problem of contradictory
data about the timing of these phases (deMenocal et al., 2000;
Kröpelin et al., 2008). Using marine records from the northwest
African coast, deMenocal et al. (2000) claim an abrupt onset and
termination of the AHP, whereas Kröpelin et al. (2008) found
a gradual climatic transition at the end of the AHP recorded in
lacustrine sediments in the Sahara desert. Each scenario has rather
different implications about the pace of human expansion through
green corridors of the Sahara. The magnitude of these climate shifts
is also important, determining whether they would have allowed
relatively moist refugia during dry intervals. The southwestern
Fig. 1. Setting of the Chew Bahir basin. (A) Chew Bahir basin within the East African Rift
(Intertropical Convergence Zone) and CAB (Congo Air Boundary) during different times of
rivers, paleo-lake outline and sites mentioned in the text. Numbers refer to available precip
http://iridl.ldeo.columbia.edu/maproom/ e accessed 12.07.2011). AeA0 cross-section along
transect through the Chew Bahir basin. Results of the pilot CB-01-2009 core discussed in t
Ethiopian highlands and the adjacent Chew Bahir and Turkana
basins might have formed refugia for human populations during
past arid phases (Ambrose, 1998; Hildebrand et al., 2010; Joordens
et al., 2011), hosting small but culturally diverse populations of
hunteregatherers, and favoring the development of new food-
gathering technologies and cultural skills. If wet phases like the
AHP did not occur synchronously in various locations, they could
have created refugia for humans and other biota, thus having
amajor influence on the spatial distribution, size, and movement of
human populations. Chew Bahir lies in a possible migration
corridor between retreat areas and therefore represents an ideal
natural laboratory to study environmental history in the source
region of modern humans.

This paper presents results from analysis of a pilot lacustrine
sediment core obtained from the Chew Bahir basin in southern
Ethiopia (Fig. 1). The core covers paleoenvironmental changes of
the past 45 ka years. The data provide valuable insights into the
System with major climatic influences. Dotted lines indicate the position of the ITCZ
the year (after Tierney et al., 2011). (B) Map of the Chew Bahir catchment with major
itation and temperature data summarized in climate diagrams between A and B (data:
the core transect is provided in (C): Six sediment cores were recovered from a WeE
his study provide paleo-climatic information for the past 45,000 years.

http://iridl.ldeo.columbia.edu/maproom/


Fig. 2. Present available geological information for the catchment of the Chew Bahir
basin provided by the Omo River Project (Davidson, 1983).
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timing, magnitude, synchronicity and internal variability of
the most recent, and hence best-studied wet episode, the
AHP. This new record of climate change will provide a basis for
better understanding the complex interplay between paleoenvir-
onmental changes and the evolution and the dispersal of our
ancestors.

2. Setting

2.1. Geological overview

The Chew Bahir basin lies in a 300 km wide rift zone, between
the Omo-Turkana basin to the west and the southern sector of the
Main Ethiopian Rift (MER) to the east (Fig. 1A). The MER splits into
two branches south of the Lake AbayaeChamo basin, separated by
the Amaro horst. The eastern branch forms the southernmost
sector of the MER. In the western sector, rift faulting dies out at the
southern shore of Lake Chamo close to the Konso uplands, but
resumes farther west in the Chew Bahir basin. The Chew Bahir
basin extends south to the Kenyan Rift and forms the northernmost
part of the broadly rifted zone that was formed when rifting
migrated eastward along pre-rift structures of the Anza Rift
(Ebinger et al., 2000; Corti, 2009).

The western boundary of Chew Bahir basin, the Hammar range,
consists of Precambrian basement with mainly undivided gneisses
(units “Pebh” and “Pegh” in Fig. 2). This comprises
feldsparebiotiteemuscovite and hornblende gneisses dominating
the Hammar range geology, migmatitic in part, with minor meta-
sedimentary gneiss (Pegb), quartzo-feldspathic gneiss, amphibolite
and granitoid orthogneiss, layered biotiteequartzefeldspar gneiss,
locally with muscovite, garnet, sillimanite, minor interlayered
amphibolithic quartzose inclusions (Davidson, 1983). In addition,
Precambrian layered mafic gneiss (Pegh) and amphibolite or
equivalent granulite facies (Pgh) occur in the Hammar range as well
as north of the basin.

The higher eastern boundary of the Chew Bahir basin, the
escarpment of the TelteleeKonso range, exposes Miocene basalts
and trachytic centers (unit “NM” in Fig. 2). Miocene basaltic lava
flows with subordinate rhyoliteetrachyte and felsic tuff intercala-
tions prevail in the eastern part of the catchment. Oligocene basalt
flows with subordinate rhyolites, trachytes, tuffs and ignimbrites
(unit “Pv” in Fig. 2) cover the Precambrian basement units in the
northeastern, northern and northwestern parts of the catchment
(Figs. 1B and 2; Moore and Davidson, 1978; Davidson, 1983).

The tectonically-formed basin provides a sedimentary archive
that extends beyond the Quaternary as the basin emerged during
older phases of rifting. The total sediment infill of the basin is
w5 km thick, according to airborne gravity and seismic reflection
data (Asrat et al., 2009). A detailed spatial and temporal quantifi-
cation of uplift and denudation along the Hammar and Teltele
ranges adjoining the Chew Bahir basin showed that rifting has been
continuous since its initiation in the Miocene, while Plio-
Pleistocene rifting and uplift was not significant in this part of the
East African Rift (Ebinger et al., 2000; Pik et al., 2008). It was further
suggested that direct evidence of denudation is inconsistent with
the hypothesis that massive Plio-Pleistocene rifting and associated
uplift occurred in this part of the East African Rift and could have
triggered recent aridification. Other studies (e.g., Ebinger et al.,
2000) also suggested similar ages and processes of rifting for this
basin. In short, recent tectonic uplift had little influence on the
short-term climatic variations.

Today, Chew Bahir is a 30 � 70 km saline mudflat that episod-
ically fills to a shallow lake during the rainy season, with water and
sediment input by the perennial Weyto and Segen rivers, which
have a w2000 km2 catchment (Fig. 1B; 4.1e6.3�N; 36.5e38.1�E;
Davidson, 1983). Their influence is now limited to the northern
part of the basin, where the rivers have formed a delta. Secondary,
contributions to the sediment influx are alluvial fans draining from
the Hammar Range to the west and the Teltele Plateau to the east.
Small drainage networks at the border faults, and the strong rainfall
seasonality, make sediment and water influx highly episodic,
because runoff is mainly from intense rainfall events in the wet
seasons, and from occasional orographic rainstorms.

Eolian input, mainly of silt, may be important, especially during
dry periods, and can be regarded as a fourth sediment source.
Eolian activity may also cause erosion and thus hiatuses in the
sedimentary record. Winds transport material from surrounding
regions, and redeposit silts within the Chew Bahir basin itself.
Minor sources of sediment are volcanic materials, deposited either
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as pyroclastic airfall deposits, or as reworked tephra. No volcanic
centers are exposed within the Chew Bahir basin. Tephrochrono-
logical correlations between the Indian Ocean, the Middle Awash
and the Omo-Turkana basin represent explosive volcanic events
that affected the entire region. Five dated marker tuffs are of
interest, especially the Konso Silver Tuff dated to 154 � 7 ka, which
lies within the timeframe of H. sapiens presence in the area (Clark
et al., 2003; Brown and Fuller, 2008; Asrat et al., 2009).

2.2. Present-day climate

The climate of East Africa is characterized by strong rainfall
seasonality, which results from the annual migration of the Inter-
tropical Convergence Zone (ITCZ) between 10� North and South,
following the zenithal position of the sun (Fig. 1A; Nicholson,1996).
Because of this migration, bimodal rains dominate the northeast e
the “Belg” rains fromMarch to May, and the longer “Kiremet” rains
from June to September. In the highlands northwest of Chew Bahir,
rainfall is unimodal with one wet season from March to November
(Fig. 1B; Segele and Lamb, 2005; Williams and Funk, 2011). Chew
Bahir lies in a transition zone between the influences of tropical
equatorial and summer monsoonal climates, and between two
major systems that bring precipitation from the Indian and Atlantic
Oceans.

The northernmost position of the ITCZ in JulyeAugust allows
a southwestern humid air stream with recycled eastern Atlantic
moisture to reach parts of East Africa via the Congo basin (Fig. 1A;
Nicholson, 1996; Camberlin, 1997). This unstable flow from the
Atlantic converges with drier air from the Indian Ocean along
a northeastesouthwest trending convergence zone known as the
Congo Air Boundary (CAB). During periods with an intensified
Indian Summer Monsoon (ISM), the CAB is thought to bring wet
spells even farther east to equatorial East Africa in July and August
(Camberlin, 1997; Okoola, 1999; Junginger, 2011). Camberlin (1997)
showed that an anomalous deep low over western India enhances
the eastewest pressure gradient between Africa and India, which
results in increased westerly winds from the Congo basin causing
the CAB to shift even further eastwards. Thus, the CAB plays a major
role in inter-annual moisture variability (Camberlin and Philippon,
2002). Other mechanisms responsible for inter-annual variability
are linked to sea surface temperature (SST) anomalies such as the
Indian Ocean Dipole (IOD) and El Niño/Southern Oscillation (ENSO)
(Diro et al., 2010).

Due to the marked topography of the southern side of the
Ethiopian dome, the local climate varies significantly with eleva-
tion. A pronounced precipitation, temperature and evaporation
gradient lies between the higher areas in the north and the lower
basin in the south as well as between the rift valley and the adja-
cent plateaus. This results in a variety of microclimates, with high
rainfall on the cooler highlands draining into the hotter and drier
lowlands. The combination of climatology and closed basin
morphology allows Chew Bahir to be classified as an amplifier lake,
Table 1
Radiocarbon data from the Chew Bahir sediment core CB-01-2009.

Laboratory no. Depth [cm] 14C age [yrs BP] Calibrated age
[yrs calPB]

2
p

Col 1093.1.1 153 1236 � 27 1133 � 60 5
Col 1094.1.2 299 3077 � 27 3301 � 70 9
Beta 271307 735 11790 � 60 13625 � 150 9
Col 1095.1.1 976 31085 � 185 35674 � 630 9
Col 1096.1.2a 1278 35508 � 581 40473 � 1280 9
Col 1097.1.1 1746 40293 � 545 44188 � 920 9

M e mollusc shells, B e bulk.
a The sample was measured only on time in the AMS.
characteristic of the eastern branch of the African Rift (Olaka et al.,
2010; Trauth et al., 2010). Those lakes are known to react highly
sensitively to even moderate climate changes and thus are potent
sites for climate reconstruction.

2.3. Long-term controls on East African climate

Long-term variations of climate are controlled by Milankovitch
precessional cycles (19e23 ka), regulating moisture availability in
East Africa (Kutzbach and Street-Perrott, 1985); orbitally-forced
radiation maxima coincide with increased humidity (Trauth et al.,
2003). The most recent of these orbitally controlled dryewetedry
cycles included the African Humid Period (AHP; w15e5 ka),
which affected large parts of East Africa, as shown by elevated
lake-levels at numerous sites (Barker et al., 2004). However, these
lacustrine climatic records also show that climate does not respond
linearly to precessional insolation change. The transitions are often
characterized by an abruptness that can be explained by mecha-
nisms such as climate-biosphere feedbacks functioning as strong
amplifiers of basically moderate trends (Renssen et al., 2006;
Castañeda et al., 2009). Apart from orbitally-forced variability,
centennial-scale variations such as DansgaardeOeschger cycles,
Heinrich events and the Younger Dryas (YD) have also influenced
low-latitude climate, although the sign, magnitude and phasing of
their impact are debated (Partridge et al., 2004; Brown et al., 2007;
Carto et al., 2009; Chase et al., 2011; Stager et al., 2011). Further-
more, Atlantic and Indian Ocean SST changes, related to the ther-
mohaline circulation, are considered to have a strong influence on
African climate (Gasse and Van Campo, 1994; deMenocal et al.,
2000; Trauth et al., 2010).

3. Methods

3.1. Core recovery

The pilot sediment core CB-01-2009was recovered in December
2009 from the now-dry western margin of the Chew Bahir basin (N
04�5006; E 36�4608) close to the distal margin of the Weyto-Segen
delta, and near an alluvial fan extending eastwards from the
Hammar range (Fig. 1B, C). A rotary single tube drill provided by
Addis Geosystems Ltd was used for the entire core. The sediment
record covers the uppermost 18.86 m of the deposits with
a recovery rate of 81%. Coring consisted of 19 drives without
overlap. In addition, five short cores (9e11 m length) were drilled
with a vibro-corer along an NW-SE transect across the basin
(Fig. 1B, C) during a second field campaign in November 2010 and
are currently under investigation.

3.2. Chronology

Age control is provided by six AMS radiocarbon ages (Table 1).
One organic bulk sample was taken in the field and sent to Beta
-sigma
robability

Material d13C [&] 14C conc.
[pMC]

Pretreatment

6.10% M �1.4 � 0.0 85.47 H2SO4

2.80% M 17 � 0.0 68.18 H2SO4

5.40% B �22.6 N.N. Acid washes
5.40% M 0.8 � 0.0 2.09 H2SO4

5.40% M 10.1 � 0.1 1.20 H2SO4

5.40% M 0.9 � 0.0 0.66 H2SO4
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Analytic Inc. in Florida for dating. Five dates were obtained from
picked shells and shell fragments of Melanoides tuberculata, which
were pre-treated and converted to AMS graphite cathodes at
Cologne (Rethemeyer et al., in press; Wacker et al., submitted for
publication) and measured with the MICADAS AMS at ETH Zür-
ich. The conventional ages were calibrated using the OxCal v4.1.7
calibration software (Bronk Ramsey, 2010; calibration curve:
IntCal09; Reimer et al., 2009). To date, no information about
a possible reservoir effect on the ages of the carbonate material is
available.

3.3. Sedimentological investigations

Core sections were split lengthwise, and the archive halves
wrapped in clingfilm to prevent desiccation, and stored in a dark
cold storage room. Magnetic susceptibility (MS) was logged to
detect variations in grain size, in the flux of magnetic mineral
particles from soils and rocks, and volcanic ash layers. Magnetic
susceptibility was obtained every 1 mm using a 2nd generation
split-core logger (scl-2.3) designed at the Helmholtz Centre
Potsdam GFZ. Magnetic susceptibility was measured with
a Bartington MS2E spot-reading sensor attached to an MS2
control unit. Element content of the sediment core was deter-
mined by X-ray fluorescence (XRF) with an Itrax�core scanner
using a Molybdenum (Mo) tube as radiation source. The
prepared core halves were scanned at 0.5 cm resolution and a
tube voltage of 30 kV, current of 30 mA and scanning time
of 20 s.
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Fig. 3. Lithology, age-depth model and results of geochemical and physical investigations
rates in mm/year. Stars e 14C ages; triangles e XRD samples; MS e Magnetic Susceptibility
G1eG5 e gaps in the record due to lost/unconsolidated sediment.
After the non-destructive measurements, the working half was
subsampled at 2 cm intervals. To avoid contamination, 0.5 cm of the
core surface was first removed. Half of each sample was freeze-
dried and ground for mineral, carbon and nitrogen analysis. Sedi-
ment color was defined using a Munsell soil color chart. Grain size
and compositionwas determined by a semi quantitative finger-test,
differentiating crudely between finer and coarser material in five
increments (clay, silty clay, silt, sandy silt, sandy gravel; simplified
in Fig. 3). Also the mineral content was determined semi quanti-
tatively, by X-ray diffraction (XRD) analysis of finely ground bulk
samples, without further treatment or adding a standard indicator,
using a Siemens D5000 diffractometer and EVA for phase
identification.

The biogeochemical indicators Total Nitrogen (TN) and Total
Carbon (TC) have been analyzed along the core in a w32 cm
resolution. TC has been differentiated into Total Inorganic Carbon
(TIC) and Total Organic Carbon (TOC) and TOC/TN ratios have been
calculated to distinguish between terrestrial and aquatic carbon
sources. However, with very low TN values (ranging from 0.01 to
0.04 wt%) as well as a low TOC content (variations between 0.1 and
0.3 wt%), neither the values nor the variability of the ratios are
significant enough and are therefore excluded from further
discussion (Meyers, 2003).

Smear slide analyses were conducted on the non-ground half of
subsamples along the entire core at w30 cm intervals and in
selected sections at higher resolution to gain initial insight about
sediment composition and possible biological indicators, such as
pollen, diatoms, ostracods and charcoal. For diatom identification,
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of the pilot core CB-01-2009. Numbers along the age model present sedimentation
; LGM e Last Glacial Maximum; YD e Younger Dryas; AHP e African Human Period;
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selected samples were treated with KOH and examined under an
electron microscope. For semi-quantitative analyses following the
principles of Gasse (1986), light microscopy was used, com-
plemented with a polarizer.

4. Results

4.1. Core description

The pilot core CB-01-2009 was drilled to 18.86 m depth without
replicate coring so that due to a 19% core loss the recovered
material comprises 15.36 m in total. Five gaps interrupt the profile
(Fig. 3; G1eG5), because of unconsolidated sediments (G1) and
material that was not completely recovered (mostly sand) or lost
due to technical limits (G2eG5). The topmost section (G1;
0e130 cm) of the core has been subjected to soil formation
expressed in unconsolidated sediment. The hiatuses as well as the
unconsolidated section were unavailable for continuous geophys-
ical and chemical measurements and therefore did not provide
data. The lithology of the rest of the core comprises lacustrine
unlaminated silty clays, which are intercalated with sandy layers
and coarse detrital fragments. In the lowermost section, prominent
carbonate layers mark parts of the lacustrine sequence. Up to six
horizons with abundant gastropods M. tuberculata occur in
different matrixes from silty clay to sandy gravel.

4.2. Age model and sedimentation rates

The radiocarbon ages of biogenic carbonates and one bulk
sediment sample (Table 1) are consistent with their depths,
showing no reversals. Both linear model and cubic spline models
were calculated from the radiocarbon ages, but these show only
minor statistical deviations for the intervals of higher sedimenta-
tion rate between 150 and 300 cm and between 1280 and 1750 cm.

The estimated sedimentation rate for the interval between 45
and 40 ka is relatively high with a time-averaged value of
1.3 mm/a. After 40 ka, sedimentation rates decreased first to
0.6 mm/a (between w40 and 35 ka) and then to only 0.1 mm/
a between 35 and 13 ka. Towards the present, the sedimentation
rate increases again in two steps, first slowly with values of
0.4 mm/a between 13 and 3 ka and 0.7 mm/a between 3 and 1 ka,
reaching 1.3 mm/a during the last 1000 years (Fig. 3). The mean
sedimentation rate for the last 45 ka is w0.7 mm/a. Stratigraphic
changes in core sediment composition and grain size almost
certainly reflect additional, short-term variations in sedimenta-
tion rate that are not apparent from interpolation between dated
levels.

4.3. Sedimentological results

As the uppermost section has been subjected to soil formation,
all scanning and logging results start at 130 cm depth (Fig. 3). The
sediment color changes from greenegray shades at the base to
brown, greenebrown, grayebrown and light brown Towards the
top. The MS log shows generally higher values within coarser
layers such as sandy silts and gravels. Some higher values in the
silty clays may be attributed to non-detectable grain size varia-
tions due to the semi-quantitative method used. Higher MS fluc-
tuations are observed between the base of the core and w8 m
depth; low values follow with lowest variability to w6 m depth,
followed by gradually increasing values, but still with very low
internal variability.

Initial XRD results show that mineral assemblages vary along
the core. A mixture of potassium feldspars and potassiumesodium
feldspars are main constituents of the spectrum, in particular
orthoclase and some sanidine, as well as plagioclase (albite and
anorthite). Other mineral phases are illite, analcime, epidote,
magnesiohornblende and calcite. From the smectite family, mont-
morillonite is present in the deposits. Quartz is also an important
component of the mineral assemblage (Table 2).
4.4. Geochemistry

The Itrax core scanner provided the element contents for 16
elements, but only 6 of these show a clear paleoenvironmental
signal (Fig. 3). All other elements record either a mixed signal with
multiple partly anti-correlated or phase shifted signals, or their
record does not differ significantly from random noise. Potassium
(K) shows marked variation with noticeably abrupt transitions. Its
variance changes throughout the core, in a pattern similar to that
of MS, with higher short-time amplitudes in the middle and
Towards the base of the core, far exceeding the amplitudes in the
upper 800 cm. Mean values by contrast, show larger variations in
the upper half of the core. The K content is generally higher at the
middle of the core but shows from 8 m upwards a rather abrupt
change to lower values, gradually returning to an elevated value
level at around 4 m, while framing a pronounced short-term
fluctuation between 6.50 m and 7.10 m. Iron (Fe) is high
throughout the core with somemarked variations between 10 and
8 m, and less extreme variations between 14 and 12 m. Abrupt
transitions Towards more stable conditions with less variability
are apparent in the rest of the core. The Fe distribution along the
record largely correlates with the K values, except the long-term
mean value decrease described for the K curve between 8 and
4 m, where the Fe concentration on the contrary remains high.
Silica (Si) largely follows the K curve but exhibits a generally lower
variability and with gradual rather than abrupt transitions. The
titanium (Ti) curve varies with a low magnitude and has generally
lower amplitude short-term variations than the other elements.
Calcium (Ca) values follow the macroscopically observed calcite
layers and layers with greater snail abundances. Ca content varies
around a constant mean, but short-term variations are present
throughout the core. Highest variability occurs between 10.5 and
8.5 m, 7.5 and 6.5 m and 3 and 2 m. The strontium (Sr) curve
parallels the Ca curve, but with generally lower values. Interest-
ingly, most Ca and Sr peaks show distinct anti-correlations with K
and Fe, particularly at 10.4 m, 10.2 m or at 8.5 m and around
7.20 m, 2.2 m and 2.85 m.
4.5. Biological indicators

Smear slide analyses revealed the occurrence of ostracods,
charred plant remains and diatoms that are not present throughout
the whole core but occur in discrete layers. The sediments do not
contain detectable numbers of pollen or spores. Smear slide anal-
yses show a gradual increase in diatom abundance Towards
a diatom-rich layer between w6.20 and w5.45 m dominated by
Aulacoseira and Cyclotella, but the low absolute numbers and poor
species diversity do not allow quantitative estimation of past
ecologic conditions in the lake. No indicators for saline conditions
were found in the core suggesting that the diatoms only occurred
during freshwater episodes. Fragments and complete shells of the
gastropod M. tuberculata occur in six layers ranging from a few cm
to more than 0.5 m thickness Towards the base of the core. The
lowermost and largest mollusc layer, from w17.90 to 12.70 m, is
followed by abundant well-preserved shells at 13.10e12.80 m and
9.80e9.75 m. At w3.90e3.00 m and 2.00e1.52 m several single
shells in a clayey matrix and dense fragmented mollusc layers have
been identified.
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5. Discussion

5.1. Core chronology

The agemodel may be rather limited with six radiocarbon dates,
but the sedimentation rates were very linear with two change
points and no reversals; therefore given ages might lack high
precision, but are reliable. Some very striking well-studied climate
events e in particular the Younger Dryas (YD) e occur exactly
where they are expected to be (Figs. 4 and 5). Furthermore, this
study is not attempting to determine higher frequency climate
variations that would require a high-resolution age model. So,
according to the age model for the core, CB-01 records climate
history spanning from w44 ka to 1.0 ka, including the Last Glacial
Maximum (18e23 ka), the African Humid Period (5e15 ka) and
ending with the onset of theMedievalWarm Period (700e1000 BP/
950e1250 AD).

Some of the metasedimentary gneisses contain minor interca-
lated marble units (Davidson, 1983, Fig. 2), and the latter could be
possible source of 14C-depleted runoff. The area has no young
volcanoes and few hot springs, representing other possible sources
for 14C depleted water. The interpretation (below) suggests that the
maximum paleo-lake depth was less than 50 m during highstands
over the past 45 ka, enabling constant water circulation and thus
preventing enrichment with old 14C in the deeper parts. Conse-
quently, these factors may have reduced the chances of old 14C-
depleted C entering the basin. Further investigations, such as
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Fig. 5. Comparison of the Chew Bahir potassium (K) record with other paleo-climate
records. Records plotted from top to bottom are as follows: d18O data from NGRIP
(North Greenland Ice Core Project members, 2004) with numbers referring to Dans-
gaardeOeschger events; terrestrial dust input to the tropical east Atlantic (deMenocal
et al., 2000; note reverse scale); d18O data from Hulu (Wang et al., 2001) and Dongge
caves (Dykoski et al., 2005; note reverse scale); d15N data as proxy for denitrification
and productivity in the Arabian Sea in the Gulf of Oman 18�N (Altabet et al., 2002);
Chew Bahir potassium (K) record (note reverse scale); Lake Tanganyika dD leaf wax as
proxy for precipitation variability (Tierney et al., 2008; note reverse scale); SST (sea
surface temperature) record from the eastern Pacific (Martínez et al., 2003) and
insolation variations (Berger and Loutre, 1991). Dashed lines indicate time slices dis-
cussed in the text. Gray bars refer to Younger Dryas (YD) and Heinrich events H1eH5.
The black squares show 14C dates along the Chew Bahir record.
parallel dating of charcoal and biogenic carbonate will shed light on
the reliability of the radiocarbon chronology.

The inferred dryewetedry cycles are also expressed in the
distinct changes of the sedimentation rate. Especially with the
onset of the last humid period 15 ka ago, the sedimentation rate
increased significantly by a factor of six to seven between the two
dated levels of 35 and 13 ka calBP. Correspondingly, higher sedi-
mentation rates occurred from 45 ka to 35 ka, though interrupted
by a large hiatus, which prevents distinguishing whether there was
one single continuous humid period or more. Thus, wetter condi-
tions coincide with increased deposition, which is explained by
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enhanced fluvial input and connected to a more continuous
deposition of generally finer material.

The position of the coring site within this flat basin does not
make fluvial erosion and redistribution during lake conditions very
likely. However, postulated dry phases indicated by coarser input
during strong rain events via the alluvial fan may have also let to
a certain amount of fluvial erosion at the coring site, which could
not be specified further. If at all, the fluvial erosion is incorporated
in the hiatuses G2eG5.

5.2. Evaluation of proxies

The lacustrine sediments of core CB-01-2009 reflect a highly
variable environment during the Late Quaternary. The geochemical
results concur with physical and biological indicators. The most
conspicuous paleoenvironmental indicator is potassium, inter-
preted as a proxy for aridity in the Chew Bahir catchment. Under
generally arid conditions with sparse vegetation cover, the gneisses
(e.g., the potassium-rich orthoclase feldsparebiotiteemuscovite-
gneisses) as well as two-mica granites with conspicuous ortho-
clase phases constituting the Hammar range are eroded more
easily, and thenwashed into the basin via alluvial fans. These events
are expressed by sharp increases of K in the record, reflecting the
onset of dry conditions on millennial or even centennial timescales.
Increased sediment supply from the alluvial fans of Hammar range
during dry conditions into a shallow or even dried out lake also is
reflected by coarser material (like sandy silt and sandy gravel;
Fig. 3), which is washed in during strong rain events. The K in the
record can be attributed exclusively to terrigenous and allochtho-
nous input; and once deposited, no further processes change or
enrich the amount of K.

The XRD results show the occurrence of the potassium-rich
mineral illite [(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)],
throughout the stratigraphy, and other potassium-rich minerals,
orthoclase (potassium feldspar; KAlSi3O8), and sanidine
[(K,Na)(Si,Al)4O8], which occur in the top 30 cm and at 8.44e12.63
depth. Illites are commonly associated with alteration products of
micas (biotites and muscovites), and in this case, illites could be
alteration products of the feldspathic and micaceous gneisses and
granites, which are the dominant rock units forming the Hammar
range. The illite content largely correlates with phases of high K
values (Table 2). Quartz, which generally is less sensitive to alter-
ation than feldspars and micas, appears especially in the upper
levels of the core, almost unaltered. This also suggests a scenario
with increased alluvial fan or eolian activity.

Alluvial fans usually become active during occasional short but
intense rainfall events instead of evenly distributed rainfall.
Moreover, the deposits that are washed in by the Weyto and Segen
River from the north of the catchment are rather unlikely to reach
the elevated marginal position of CB-01 in a dried out playa
scenario or when water level of paleolake Chew Bahir was very
shallow.

During wet phases, however, with a higher lake water levels and
denser vegetation cover in the catchment area, evenly distributed
rains result in the more-or-less continuous discharge of all rivers,
transporting more diverse and generally finer material. This also
includes Fe- and Ti-richmaterial input from the basalts constituting
the eastern and northeastern ridges surrounding the basin. This
input firstly dilutes the already decreased potassium input via the
alluvial fan from the Hammar range and secondly mixes in an array
of sediments from the entire catchment. Thus, the K record
potentially provides a clear aridity signal, as the provenance and
transport mechanisms of the element are rather constrained. In
support of this dry/wet interpretation, magnetic susceptibility
largely parallels the potassium record, despite very coarse layers,
where MS is reduced, such as around 7 m. Here, K shows an abrupt
return to high values, whereas MS remains low. Richardson and
Richardson (1972) employed feldspars and associated elements as
indicators for more arid phases and reduced lake levels in the
Naivasha basin in central Kenya, arguing that these minerals have
been transported to the deposition area by small streams that in
turn were associated with larger grain sizes.

The Si distribution along the record largely parallels the potas-
sium record from the base up tow5.5 m depth, which corresponds
to the mid-AHP. This can be explained by a similar provenance as K,
because mostly Si e as a quartz (SiO2) phase e forms a major
component of all the quartzo-feldspathic gneisses and the associ-
ated micaceous granites of the Hammar range, and during dry
intervals Si is subjected to the same transport mechanism.
However, during long wetter periods such as the AHP, the lake
system stabilizes and biogenic production (e.g., silica rich diatom
frustules, see also Fig. 3) increases the amount of Si in the sediment
autochthonously. As the XRF results for Si do not differentiate
between terrigenous and biogenic Si, the comparison toTi was used
to distinguish between both processes, as the Ti input is exclusively
terrigenous. However, Si can be found in most other minerals, as is
also clear from Table 2.

Iron (Fe) is another allochthonous component that shows a very
similar pattern to Si and especially to K in the lowermost parts of
the profile up to 7.8 m depth. As iron is highly redox sensitive, post-
sedimentary processes have overprinted the iron signal in the
sediment, so iron values differ considerably from potassium,
especially during the AHP.

Comparing Fe, K and Si results, it becomes apparent that these
elements seem to react very similarly, except during the long wet
phases where these three elements show major divergences in
trend (Figs. 3 and 4). This has to be attributed to the far more
diverse processes (e.g., biogenic production of silica and post-
sedimentary reduction of iron) and a more versatile provenance
of Fe and Si than K. Whereas K originates mainly from the Hammar
range, Fe (found in illite and magnesiohornblende) and Si (mainly
from quartz but also common in most felsic minerals) may addi-
tionally come from other sources. Iron can be attributed to major
Fe-containing mineral phases such as augite, olivine, and horn-
blende, and to accessory phases such as titanomagnetite from the
northeastern and eastern ridges of the catchment (Fig. 2).

Ca and Sr are strongly correlated, indicating a common source
and/or transport mechanism. Both elements are present in feld-
spathic gneisses, granulites and basalts of the catchment area, and
are thought to have entered the lake in solution. The cycle of Sr is
primarily driven by co-precipitation with authigenic calcite, due to
similar ionic radiuses of Ca and Sr, during algal photosynthetic or
evaporative precipitation (Stabel, 1987). Additionally, isolated
carbonate layers (Fig. 3) throughout the lower part of the core
indicate phases of high evaporation that coincide with increased
XRF Ca counts (Fig. 4). Therefore, peaks in the Ca record appear at
pronounced dry spells, hinting at evaporation. Moreover, enhanced
bio-productivity as a second masking process overprints the Ca
signal. The onset of heavy rainfalls after drought, bringing nutrients
into the lake basin resulted in the increase of the bio-productivity of
an existing lake. During these scenarios, Ca and Sr values are high,
while K shows a clear anti correlation. This most likely reflects
irregular short-term humid events during a period of generally
reduced humidity, but still providing enough moisture to sustain at
least a shallow lake.

The gastropodM. tuberculata occurs in awide range of fresh and
brackish water habitats throughout Africa (Pointier et al., 1992;
Leng et al., 1999). Its littoral habitat is mostly associated with
aquatic and subaquatic plants in up to 2 m water depth, providing
the snails with protection fromwave action, as well as food and egg
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laying sites (Leng et al., 1999). Some authors report that M. tuber-
culata may live within fine-grained sediment at greater water
depths (10e15 m) where they can form high population densities
(Pointier et al., 1992). Occurrences of these snail shells in combi-
nation with the other proxies indicate water level lowering. These
molluscs always appear at the postulated transition zones, indi-
cated by the geochemical proxies for lower water levels and larger
grain sizes. Therefore, it seems that these snail shells represent lake
levels not deeper than 10 m.

5.3. Paleoclimatic implications for the past 45 ka

The high-resolution K record for the past 45 ka correlates (Fig. 5)
with the dD leaf wax record from Lake Tanganyika (Tierney et al.,
2008), marine dust records from the Atlantic coast of West Africa
(deMenocal et al., 2000) and the Arabian Sea (Altabet et al., 2002),
the stable isotope records fromHulu/Dongge Cave in southeast Asia
(Wang et al., 2001) and with Greenland ice cores (NGRIP; North
Greenland Ice Core Project members, 2004).

Assuming that high values of K reflect aridity, the interval
45e35 ka is characterized by intermediate moisture conditions
interrupted by drier periods every w1000 years. Comparable
conditions were also observed in records from Lake Abhé in
north Ethiopia (Gasse and Street, 1978) and Lake Tanganyika
(Tierney et al., 2008). The two hiatuses in the Chew Bahir record
are mostly due to lost sandy material, possibly indicating arid
episodes with coarse material transported via the alluvial fan.
The arid episode around 37 ka could possibly coincide with the
H4 event, which is reported to have caused widespread aridity in
East Africa and Asia (Wang et al., 2001; Tierney et al., 2008). The
long-term transition to greater humidity from around 35 ka on
follows declines in the sea surface temperatures (SST) of the
tropical East Pacific leading to generally drier tropical climate
during the Last Glacial Maximum (LGM, 18e23 ka; Gasse, 2000;
Martínez et al., 2003). A strong temporal relationship between
SST cooling of 2e4 �C in the eastern equatorial Pacific and ice
sheet growth has been reported leading into a more La Niña like
SST field (Clark et al., 2009). According to a model of the response
of the NINO3 index, this cooling may have been caused by
changes in the low-latitude precession-related insolation
(Clement et al., 1999).

Between 35 and 23 ka, even more pronounced aridity domi-
nated the climate in tropical East Africa with short-term shifts
Towards humidity indicated by distinct single negative peaks in the
K record. In contrast to the time prior to 35 ka, the short-term
fluctuations within the overall changes follow a generally
decreasing trend. However, the amplitudes of these short-term
fluctuations during the LGM far exceed all short-term fluctuations
of the past 20 ka. The pattern of these strong short-term variations
resembles DansgaardeOeschger cycles, and the dry episodes could
possibly be interpreted as Heinrich events by tentative correlation
with the NGRIP ice core. An AfricaneAsian influence is suggested by
correlations with records from Lake Tanganyika, the Arabian Sea
and the Hulu/Dongge records (Fig. 5). However, the age model with
merely six ages and increasing error bars down-core is not suffi-
ciently precise to correlate dryewetedry excursions Towards the
core base with DansgaardeOeschger cycles.

From 23 ka to 5 ka, K values seem to follow the precession-
forced increase in insolation. The time interval between 23 and
19 ka corresponds to the high-latitude LGM, which coincided with
pronounced aridity in many parts of tropical Africa and elsewhere
in the tropics (Gasse et al., 2008), well reflected by the K record of
the Chew Bahir basin. The cooling of the equatorial Atlantic during
the LGM reduced moisture transport to the Congo basin via the
usually humid Congo air stream, producing higher aridity in the
central parts of Africa. Since Chew Bahir lies at the foot of the
Ethiopian plateau, it is occasionally influenced by the humid
Congo air masses at the present day. Hence, it is possible that what
is seen in the K record is the result of a combination of both
mechanisms: the insolation forced moisture shifts and the
migration of the CAB.

Increased insolation, on the contrary, results in greater
humidity at Chew Bahir after 19 ka. However, despite gradual
insolation change, the return to more humid conditions occurs
in abrupt steps of increasing amplitude at 19e15 ka,
14.5e12.8 ka, and 11.5 ka. Such a stepwise increase in precipi-
tation is also described in various paleoclimatic records from
Africa north of 8e9�S (Gasse et al., 2008). The AHP (15e5 ka) is
the result of the precessional increase in Northern Hemisphere
insolation during low eccentricity (deMenocal et al., 2000;
Barker et al., 2004; Garcin et al., 2009). The humid Congo air
stream may have again become more influential with the onset
of the AHP 15 ka ago as suggested by a recent study from the
Suguta Valley, just south of the Chew Bahir basin (Junginger,
2011). Extreme humidity in northern Ethiopia is thought to be
the result of an eastward shift of the CAB due to a deepening of
the atmospheric low over India causing an enhanced pressure
gradient between India and Asia (Hailemichael et al., 2002). The
combination of rising SSTs providing more moisture and addi-
tional continuous moisture availability during the present dry
season via the CAB may have caused the pronounced humid
episode in the Chew Bahir basin.

According to the age model, a rapid shift Towards extreme arid
conditions is indicated by increased K values around 12.8 ka, before
returning to wet conditions at 11.6 ka, as reflected by a steep
decrease of K. This dramatic arid event within the orbitally-
controlled humid interval correlates with the high-latitude
Younger Dryas event (YD, 12.8e11.6 ka) that coincides with arid
conditions everywhere in Africa north of 10�S (Barker et al., 2004;
Gasse et al., 2008; Tierney et al., 2011). The K data indicate a short-
term return to humid conditions around 11.8 ka ago in Chew Bahir,
but the final return to full humid conditions started abruptly
around 11.6 ka, within about 200 years. This rapid termination of
the YD is also documented in other East African paleoclimatic
records, such as the onset of ice accumulation on Mt. Kilimanjaro
with the tentative age of 11.65 ka (Thompson et al., 2002) and rapid
regressions of lakes Nakuru (Richardson and Dussinger, 1986),
Suguta (Junginger, 2011), Abiyata (Chalié and Gasse, 2002) and
Ziway-Shala (Gillespie et al., 1983) (Fig. 5). It is also suggested in
various studies from West Africa (e.g., deMenocal et al., 2000;
Shanahan et al., 2006) and Asia (e.g., Wang et al., 2001; Yuan et al.,
2004).

Having returned to maximum humid conditions after the YD,
multiple fluctuations in the K, Ca and Sr records indicate a series of
brief drier intervals around 10.8e10.5 ka, 9.8e9.1 ka (hiatus due to
unconsolidated sands), followed by a gradual decrease of moisture
between 8.0 and 7.5 ka and an abrupt major drought event around
7 ka (Fig. 6). Most of these events have been described as abrupt
phases of maximum aridity during the AHP throughout East Africa
from various archives including dust events in the Kilimanjaro ice
record (Thompson et al., 2002), lake-level variations, and changes
in diatom assemblages (Telford and Lamb, 1999; Gasse, 2000; Guo
et al., 2000; Chalié and Gasse, 2002).

The termination of the AHP in the Chew Bahir basin according to
the K record started around 6 ka ago and continued for 1000 years
until full arid conditions were reached at 5 ka. This gradual climate
change contrasts with the abrupt termination of the AHP recorded
in marine archives (deMenocal et al., 2000; Renssen et al., 2006;
Garcin et al., 2009). These records and climate modelling results
indicate a more abrupt decline of the AHP between 5 and 4.5 ka



Fig. 6. Comparison of onset and termination of East African lake levels from Chew
Bahir potassium (K) record (note reverse scale), lake Nakuru (Richardson and
Dussinger, 1986), lake Ziway-Shala (Gillespie et al., 1983), and Lake Turkana (Johnson
et al., 1991; Brown and Fuller, 2008) with the eolian dust record to Mt. Kilimanjaro
(Thompson et al., 2002) due to enhanced aridity, hydrological proxy data from Lake
Challa from dD leaf wax (Tierney et al., 2011), the oxygen-isotope records from Dongge
cave (Dykoski et al., 2005), and the paleo-ENSO record from Laguna Pallcacocha,
southern Ecuador (Moy et al., 2002). AHP e African Humid Period; YD e Younger
Dryas; dark gray bars indicate dry episodes; light gray bars indicative for humid
episodes.
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(deMenocal et al., 2000; Morrill et al., 2003). An equally large body
of evidence points to a gradual trend Towards aridity sincew7.8 ka
(Fleitmann et al., 2003; Gupta et al., 2005; Wang et al., 2005; Asrat
et al., 2007; Baker et al., 2010; Junginger, 2011). A highly nonlinear
response of paleoclimate records implies that the abruptness of the
termination of the AHP has been amplified considerably by feed-
backmechanisms as suggested by Claussen et al. (1999). deMenocal
et al. (2000) differentiate between two feedback mechanisms that
could have amplified such a transition: coupled vegetation-albedo
feedback and ocean surface temperature-moisture feedback.
Comparisons of lake level records located in the vicinity of Chew
Bahir show large differences in the timing and abruptness of the
AHP termination (Fig. 6). These differences are almost certainly due
to local hydrological factors related to the topography of the lake
basins and their catchments.

Following the termination of the AHP at 5 ka, arid conditions
re-established and remained relatively stable until 2 ka, with one
short abrupt excursion Towards more humid conditions around
3 ka. A longer humid interval began abruptly in two steps around
2 ka, and remained humid until 1.5 ka before terminating
abruptly at 1.3 ka. The combined increase of Fe and Ti in the
record hints at constant fluvial input as the dominant input
system for that time. Dry conditions on a millennial scale are
a common feature of tropical African paleo-climate archives such
as that around 4 ka at Ziway-Shala (Gillespie et al., 1983) or Lake
Turkana (Johnson et al., 1991; Fig. 6). The presence of a millen-
nial-scale drought in the stalagmite records of southeast Asia
(Wang et al., 2001) as well as marked aridity in Ethiopian spe-
leothem records for these periods (Asrat et al., 2007; Baker et al.,
2010), underlines the regional expression of this dry event.
Possible mechanisms for such humidity shifts, out of phase with
precessional forcing, may be related to an enhanced higher-
frequency ENSO (El Niño/Southern Oscillation) causing more
stable humid conditions (Fig. 6). Such enhanced periodicities in
ENSO anomalies were observed for the 3e2.5 ka, 1.6 ka and 1.3 ka
(Moy et al., 2002).
6. Conclusion

The sediment record from the Chew Bahir basin contains
a number of valuable climate proxies that provide high resolution
climate reconstructions for the past 45 ka, showing a distinct
pattern of changing environmental conditions during the Late
Quaternary in southern Ethiopia. These climate changes can be
correlated to well-known wetedry cycles for tropical east Africa
(e.g., LGM, AHP, YD), and hint to a valuable age model even if it is
based only upon six data points to date.

The Chew Bahir basin has been proven to be a suitable climate
archive with well datable deposits without age reversals that
give valuable insight into a highly variable environment. The
sediment record comprises a number of meaningful proxies,
foremost K, which enabled high resolution reconstructions of the
climate variability in the region since 45 ka, based on the analysis
of geochemical, physical and biological indicators. Sediment
types have been analyzed and indicate that input mechanisms
and provenances do vary and are clearly controlled by climate
changes and can therefore help to understand regional shifts in
moisture availability. With six to seven fold increased sedimen-
tation rates during humid phases, Chew Bahir reacts
very sensitively Towards even moderate climate changes and
clearly reflects short-term variations on millennial timescales,
like the latest one known as the Younger Dryas. Precession-
forced long-term variations, such as the AHP, are expressed in
the Chew Bahir basin, and appear to be synchronous with
changes in Lake Malawi, Lake Tanganyika, West African marine
cores, and the Hulu/Dongge Caves. This wet phase in Chew Bahir
is marked by a stepwise, rather abrupt onset and a gradual
termination.

Longer core records, to w150 m depth, from the basin thus will
offer the possibility of reconstructing the paleoenvironmental
history since the origin of H. sapiens 200,000 years ago. Conse-
quently, the site has great potential to shed light on the setting of
evolution and dispersal of AMH, although only 45 ka at present.
Further detailed analysis of a transect of cores through the basin
will provide a better understanding of localized sedimentation in
the lake and the mechanisms and processes behind the climate
variations derived from these findings can be made evident from
the sedimentary archive. It should also be possible to correlate the
Chew Bahir results with archeological findings in the region
(Brandt et al., 2012), testing models of the causes of population
change and technological innovation in early human societies.
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