Who?

- Collaborative research centre 806 "Our way to Europe" investigates the population dynamics \& dispersal processes of early mankind
B1: "eastern trajectory" of modern migration to Europe links Middle East, Anatolia, Balkans, and Black Sea. Special focus: Pannonian Basin.

What?

- past environmental conditions and variations
combination of dating, sedimentology \& geochemistry
- Fig. 1 shows the investigated sections

First steps at loess profile Stalac

- composite profile contains four sections \& presumed Y5 tephra (see Fig. 2) - one of the southernmost profiles \rightarrow outside typical loess belt!

5 luminescence samples prepared according to established procedures (Frechen et al., 1996) for polymineral and quartz fine grains ($4-11 \mu \mathrm{~m}$)

- Investigation:

1. quartz (Q): preheat plateau test, dose recovery test (Fig. 3)
2. polymineral fine grains (PM): 1. IR stimulation temperature test, dose recovery test (Fig. 5), equivalent dose

Fig. 2 shows a profile sketch and the location of OSL samples. Central Age Model-ages are shown in red (based on Galbraith et al. (1999), Guerin et al. (2014), Zimmermann (1971), Bell (1970), Preusser (2005)).

Fig. 1: Loess distribution modified after Haase et al. (2007) and locations sampled in 2013 \& 2014. Section Stalac is located outside of typical loess belt.

Methods polymineral fine grains

Fig. 4: Polymineral samples were analysed according to Thiel et al., 2011 \& Buylaert et al., 2012. Example of test signal behaviour of St3 on the left. Typical growth curve of St 3 on the right.

Fig. 5: Left: 1st IR stimulation temperature was tested for St3 and St10 (according to Buylaert et al., 2012). Both show a plateau. Therefore measurements were continued with plR $\mathrm{F}_{50} \mathrm{R}_{290}$ (according to Thiel et al., 2011). Right: results of dose recovery tests. The ratio of recovered to given dose lies within 10% of unity for both samples.

Results \& Conclusion

- quartz is not the mineral of choice
polymineral $\mathrm{plR}_{50} \backslash \mathrm{R}_{290}$ shows promising results
- ages explain stratigraphy from MIS 1-MIS 6: profiles Stalac 0 \& Stalac 1 show MIS 6
(L2), profile Stalac 2 offers MIS 5 (S1) soil and MIS 4 (L1L2) loess, profile Stalac 3 is characterized by MIS 3 (L1S1) soil, MIS 2 (L1S1) loess, and recent soil
tephra does not resemble Y 5 tephra, but shows another tephra (of MIS 6)

Acknowledgments

This project is affiliated to the CRC 806 "Our way to Europe". We thank the German Science Foundation (DFG) for funding this project. Moreover, we thank Slobodan Markovic and Nikola Bačević for their support in Serbia.

References

J.P.P. BUYLAERT, M. JAIN, A.S. MURRAY, K.J. THOMSEN, C. THEL \& R. SOHBAT (2012): A
cene
cence dating method for Middle and Late Pleistocene sediments. Boreas 41 , pp. 435-451. D. HAASE, J. FINK, G. HAASE, R. RUSKE, M. P. PÉCSI, H. R. RICHTER, M. ALTERMANN \& K-D. JÄGER (2007): Loess in
Eurone-it s spatial distribuion Europe-its spatial distribution based on a European Loess Map, scale $1: 2,500,000$. Quatermary Science
Reviews 26 , pp. 1301-1312. Reviews 26, pp. 1301-1312.
M. FRECHEN, \mathbf{U}. ScHWEITRE
nique. Ancient TL 14, pp. 15-17.
A.S. MURRAY \& A.G, WPNTLLE (2003): The single aliquot regenerative dose protocol: potential for improvements
in reliabily

A.S. MURRAY \& A.G. WITTLE (2000): Luminescence dating of quartz using an improved single-aliquot
regenerative-dose protocol. Raciation Measurements 32, pp. 57 -73.
 cence dating of Startizn loess profili e Austria) - essting the potential of an elevated temperature post-1R IRS
protocol. Quaternary international 234, pp. 23-31.

