GEOCHEMICAL AND GEOPHYSICAL STUDY OF SEDIMENTS OF THE LAGUNA GRANDE, SOUTHERN SPAIN

GEOCHEMISCHE UND GEOPHYSIKALISCHE STUDIE AN SEDIMENTEN DER *LAGUNA GRANDE*, SÜDSPANIEN

Bachelorarbeit

von

Simon Washausen

Matrikelnummer: 300706

Email: simon.washausen@rwth-aachen.de

Zur Erlangung des akademischen Grades Bachelor of Science (B. Sc.) Georessourcenmanagement RWTH Aachen University, Neotektonik und Georisiken

Sommersemester 2015

Erstprüfer: Univ.-Prof. Dr. Klaus Reicherter

Zweitprüfer: Dr. Margret Mathes-Schmidt

Betreuerin: M. Sc. Tabea Schröder

Aachen, xx.xx.2015

EIDESSTAATLICHE ERKLÄRUNG

Ich versichere, die Bachelorarbeit selbstständig und lediglich unter Benutzung der angegebenen Quellen und Hilfsmittel verfasst zu haben.

Ich erkläre weiterhin, dass die vorliegende Arbeit noch nicht im Rahmen eines anderen Prüfungsverfahrens eingereicht wurde.

Aachen, 15. August 2015

ABSTRACT

The Laguna Salada in southern Spain is a type of Playa Lake and constitutes an important climate archive for the southern part of the Iberian Peninsula. The focus of this study, as part of the CRC 806 – Our Way to Europe, project C₃, is to reconstruct the climatic and environmental history of the Iberian Peninsula during the Late Glacial and Holocene on a high resolution.

Therefor, several drills were carried out in and around the Lake and were merged in one 11.70 m long sediment sequence. In the context of this study, the Drillcore was invastigated using geophysical and geochemical methods, from which conclusions can be drawn concerning the input of organic matter as well as rates of erosion in the catchment area.

KURZFASSUNG

Die Laguna Salada im südlichen Spanien fällt in die Kategorie der Playaseen und stellt so ein wichtiges Klimaarchiv für den südlichen Teil der Iberischen Halbinsel dar. Das Ziel dieser Arbeit, als Teil des SFB 806 – Unser Weg nach Europa, Projekt C₃, ist es die Klima- und Umweltgeschichte der Iberischen Halbinsel während des letzten Glazials und des Holozäns hochauflösend zu rekonstruieren.

Dazu wurden mehrere Bohrungen im und um den See durchgeführt und zu einer 11,70 m langen Sedimentsequenz zusammengefügt. Der Bohrkern wurde im weiteren Rahmen dieser Arbeit einer geophysikalischen und geochemischen Untersuchung unterzogen, in Folge der mögliche Rückschlüsse auf den Eintrag von organischem Material sowie auf Erosionsraten im Einzugsgebiet gezogen werden konnten.

INHALTSVERZEICHNIS

INHALTSVERZEICHNIS
ABBILDUNGSVERZEICHNIS II
TABELLENVERZEICHNISIV
MOTIVATION UND FRAGESTELLUNG 2
MOTIVATION
Fragestellung
EINLEITUNG 4
Der Sonderforschungsbereich 806 4
Paläoklimatologie
Paläoklima im Quartär
Dansgaard-Oeschger-/Heinrich-Ereignisse
Das Klima im Holozän9
GEOGRAPHISCHER ÜBERBLICK 11
GEOLOGISCHER ÜBERBLICK
ARBEITSGEBIET 13
LAGE DES ARBEITSGEBIETES
LOKALE GEOLOGIE
Sierra Morena16
Betische Kordillere
Guadalquivir-Becken
Salzseen in Südspanien
METHODEN IM FELD 19
Bohrmethodik
METHODEN IM LABOR 20
Makroskopische Bohrkernbeschreibung
Magnetische Suszeptibilität
Messmethodik
CNS-ANALYSE
Messmethodik
ERGEBNISSE 24
Stratigraphie

Magnetische Suszeptibilität	26
CNS-ANALYSE	27
DISKUSSION UND INTERPRETATION	29
SCHLUSSFOLGERUNG UND AUSBLICK	31
QUELLEN	VII
ANHANG	X

ABBILDUNGSVERZEICHNIS

Abb. 1 - Bohrung an der Laguna Salada mit dem Aufbrechhammer Cobra, der Firma Atlas
CopcoCobra2
Abb. 2 - Grafik zur Arbeit des SFB 806, westliche und östliche Route des Menschen von Afrika
nach Europa (Quelle: SFB 806 Website)5
Abb. 3 – Meteorit der auf die Erde zufliegt (Quelle: http://www.spektrum.de/news/brachte-
dunkle-materie-die-dinosaurier-um/1256147)7
Abb. 4- Klimazonen der Iberischen Halbinsel (Lautensach, 1964).
(https://albertogarcia.files.wordpress.com/2008/11/mapa_espana_aridez.jpg)
Abb. 5 - Reliefkarte der Iberischen Halbinsel mit Staatsgrenzen (rot) und der Lage des
Bohrgebietes in Andalusien (Quelle: stepmap.de)11
Abb. 6 - Geologische Karte der Iberischen Halbinsel (Lautensach, 1964)
Abb. 7 - Geographische Lage des Arbeitsgebietes auf der Iberischen Halbinsel (Quelle: ArcGIS).
Abb. 8 - Die Lagunas des Complejo Endorreico del Puerto de Santa Maria mit Lage der
Bohrpunkte (Quelle: ArcGIS). Koordinaten:15
Abb. 9 - Untersuchungsgebiet (rot) im Guadalquivir-Becken mit den angrenzenden Orogenen
Sierra Morena im Norden und Betische Kordillere im Süden (Tjalsma, 1971)16
Abb. 10 - Stratigraphie nach Korrelierung der Bohrkerne LSL 1 und LSL 2 mit Angaben zum
Farbverlauf und zur Bodenart25
Abb. 11 - Darstellung der magnetischen Suszeptibilität (MagSus) in den Sedimenten der
Laguna Salada aus einer Tiefe von o bis 11,7 m26
Abb. 12 - Darstellung des TC, TN und TS in Gew% in den Sedimenten der Laguna Salada aus
einer Tiefe von o bis 11,76 m
Abb. 13 – Anleitung zur makroskopischen Beschreibung von Bohrkernen im Gelände XIII
Abb. 14 - Einstellung bei der Messung der magnetischen SuszeptibilitätXVI

TABELLENVERZEICHNIS

Tab. 1 - Auswertung der Stratigraphie	XIV
Tab. 2 - Auswertung der magnetischen Suszeptibilität (MagSus)	XVII
Tab. 3 - Auswertung der Gesamtanteile von Kohlenstoff (C), Stickstoff (N) und Schw	/efel (S) XX

MOTIVATION UND FRAGESTELLUNG

MOTIVATION

Der Sonderforschungsbereich 806 "Our Way to Europe" (S. 4), eine Zusammenschluss der RWTH Aachen, der Universität zu Köln und der Universität Bonn, beschäftigt sich mit der Geschichte des Menschen, genauer mit dem Ausbreitungsprozess aus Ostafrika nach Zentraleuropa und dem dortigen sesshaft werden. Dabei beschäftigt sich innerhalb des Sonderforschungsbereiches das Projekt C₃ mit den klimatischen Umweltveränderungen im Spätpleistozän auf der Iberischen Halbinsel und deren Auswirkung auf den Neanderthaler und den anatomisch modernen Menschen. Die RWTH ist hier durch das Institut für Neotektonik und Georisiken, unter der Leitung von Prof. Dr. Reicherter vertreten. In diesem Kontext wurde im März 2015 eine Feldkampagne in Südspanien durchgeführt.

Zielsetzung dieser Kampagne war es aus verschiedenen Lagunen Bohrprofile aufzunehmen, um ein möglichst komplettes Sedimentarchiv zu erlangen, da die bisherigen Informationen zu dieser Region nur oberflächlich und ungenau vorliegen. So wurden Sedimente bis in eine Tiefe von etwa 12 m erbohrt (Abb. 1). Anhand dieser Profile sollen im weiteren Verlauf, durch geeignete Analysemethoden, Rückschlüsse auf die Umweltauswirkungen kurzfristiger Klimaereignisse, wie den Heinrich-Ereignissen oder den Dansgaard-Oeschger-Ereignissen (S. 8) gewonnen und diese in den Kontext des Projektes eingebettet werde.

Abb. 1 - Bohrung an der Laguna Salada mit dem Aufbrechhammer Cobra, der Firma Atlas CopcoCobra

Diese Arbeit befasst sich dafür mit der geochemischen und geophysikalischen Untersuchung der Bohrkerne, welche an der Laguna Salada im Complejo Endorreico del Puerto de Santa Maria in der Provinz Cádiz genommen wurden.

FRAGESTELLUNG

Das der Bereich C₃ befasst sich mit der Straße von Gibraltar als möglichem Ausbreitungskorridor, welcher aus Afrika über die Iberische Halbinsel nach Zentraleuropa führte und wie das damalige Klima den modernen Menschen beeinflusst haben könnte. Dabei wird versucht durch die Zusammenarbeit von Geowissenschaftlern, Archäologen und Forschern aus angrenzenden Wissenschaften unter anderem eine Antwort darauf zu finden, warum in den südlichen Küstenregionen Spaniens Fossilien gefunden werden konnten, jedoch im Landesinneren nicht.

Die bisher vorliegenden Daten und Information, welche diese Themen betreffen, sollen durch die Analyse und Auswertung der hier genommenen Proben erweitert werden um Beweise zu finden, welche diese Hypothese bestätigen und um neue Erkenntnisse über das Paläoklima in der Zeit zwischen dem späten Pleistozän und dem Mittleren Holozän auf der Iberischen Halbinsel zu erlangen.

EINLEITUNG

DER SONDERFORSCHUNGSBEREICH 806

"Our Way To Europe" – Wie kam es zu der Ausbreitung des Moderne Menschen von Ostafrika aus nach Zentraleuropa? Mit dieser Frage beschäftigt sich der Sonderforschungsbereich 8o6 (SFB). Der SFB wird in Kooperation von Quartärforschern der Universität Köln, der Universität Bonn und der RWTH Aachen durchgeführt.

Our Way To Europe (dt. "Unser Weg nach Europa") beschäftigt sich mit der Geschichte der Menschheit. Die Fähigkeit des Menschen Entscheidungen zu treffen, das Klima und die restlichen Umweltbedingungen waren bei fast allen großen Ereignissen in der Menschheitsgeschichte grundlegende Faktoren, welche zu Populationsdynamik und Ausbreitungsprozessen führten.

Der SFB versucht mit Hilfe einer Kombination aus geowissenschaftlichen und archäologischen Methoden zu erkennen, ob die vorherrschenden Umweltbedingungen eine unterstützende oder hemmende Rolle bei diesem Migrationsereignis eingenommen hat. Es wird versucht die Ausbreitung des modernen Menschen von Afrika aus, bis zu seiner Ansiedlung in Zentraleuropa, innerhalb der letzten 190.000 Jahren unter chronologischen, regionalstrukturellen, klimatischen, umweltbedingten und soziokulturellen Gesichtspunkten zu betrachten.

Dabei wird ein Fokus auf die folgenden drei Themen gesetzt:

- Die primäre Expansion unserer Spezies von Afrika nach Europa vor etwa 190.000 bis 40.000 Jahren im klimatischen, umweltgeschichtlichen und kulturellen Kontext.¹
- 2. Die sekundäre Expansion und der Rückzug unserer Spezies, bedingt durch klimatische, umweltgeschichtliche oder kulturelle Änderungen, wie beispielsweise die Wiederbesiedlung des Nahen Ostens während des mittleren Weichselglazials oder von ausgedehnten Teilen Europas nach dem Ende des letzten Kältemaximums, welche

¹ Vgl. Collaborative Research Centre 806, Our Way to Europe – Introduction, URL:http://www.sfb806.uni-koeln.de/index.php/about (Stand: 5.5.2015).

letztendlich die Verbreitung und Durchsetzung der neolithischen Wirtschaftsweise in ganz Europa zur Folge hatte.²

3. Bevölkerungsaustausch, Mobilität und Migration in miteinander verknüpften kulturellen und ökologischen Systemen, hervorgerufen durch den wachsenden Einfluss menschlichen Handelns auf die Umwelt, besonders die Ausbreitung, der Rückzug und die interne Mobilität innerhalb sesshafter prähistorischer Gesellschaften.³

Um den Einfluss der Umweltbedingungen zu ermitteln, untersucht der SFB unterschiedlichste Umweltbedingungen im lokalen, regionalen und kontinentalen Rahmen. Man geht davon aus, dass es einen östlichen Migrationskorridor über den Balkan und einen westlichen über Nordafrika und die Iberische Halbinsel gibt – der Erste ist bewiesen der Zweite möglich (Abb. 2).

Abb. 2 - Grafik zur Arbeit des SFB 806, westliche und östliche Route des Menschen von Afrika nach Europa (Quelle: SFB 806 Website).

² Vgl. Collaborative Research Centre 806, Our Way to Europe – Introduction, URL:http://www.sfb806.uni-koeln.de/index.php/about (Stand: 5.5.2015).
3 Vgl. Collaborative Research Centre 806, Our Way to Europe – Introduction, URL:http://www.sfb806.uni-koeln.de/index.php/about (Stand: 5.5.2015).

Innerhalb des SFB beschäftigt man sich unter der Leitung von Univ.-Prof. Dr. Klaus Reicherter, Prof. Dr. Martin Melles und Prof. Dr. Helmut Brückner im Projekt C3 unter dem Titel "The Western Mediterranean - Bridge or Barrier?" (dt. "Das westliche Mittelmeer - Brücke oder Barriere") mit der westlichen Route, welche über die heute etwa 14 km breite Straße von Gibraltar führt.⁴ Aufgrund einer niedrigen Meeresspiegelhöhe im späten Pleistozän betrug die Distanz zwischen den Kontinenten zu dieser Zeit nur annähernd 5 km. Auf der Strecke zwischen der Nordküste von Afrika und den nördlichen Ausläufern der Pyrenäen in Zentraleuropa durchläuft man die verschiedensten biogeographischen Zonen mit ariden bis humiden Klimaverhältnissen. Aufgrund dieser Vielfalt bildet diese Region die ideale Grundlage, um klimatische und umweltbedingte Einflüsse in Bezug auf kulturelle Veränderungen zu erforschen.

Ziel des Projekt C₃ ist es, anhand von Lagunensedimenten die Umweltgeschichte zu rekonstruieren und mit kulturgeschichtlichen und populationsdynamischen Daten zu korrelieren. Dabei werden zwei Zeitperioden genauer betrachtet. Zum einen die Zeitspanne der Kolonisation Europas durch den modernen Menschen vor etwa 45.000 bis 25.000 Jahren und im Weiteren die Zeit ab dem Beginn der Neolithischen Revolution vor 9.000 bis 5.000 Jahren und dem damit einhergehenden Beginn des Nahrungsmittelanbaus.⁵

⁴ Vgl. Collaborative Research Centre 806, The Western Mediterranean – Bridge or Barrier?, URL:http://www.sfb8o6.uni-koeln.de/index.php/projects/cluster-c (Stand 5.5.2015). ⁵ Vgl. Collaborative Research Centre 806, The Western Mediterranean – Bridge or Barrier?, URL:http://www.sfb8o6.uni-koeln.de/index.php/projects/cluster-c (Stand 5.5.2015).

PALÄOKLIMATOLOGIE

In der heutigen Zeit ist das Klima, hauptsächlich in Bezug auf die Erwärmung der Erdatmosphäre, eines der am kontroversesten diskutierten Themen in unserer Gesellschaft. Doch genau wie heute das Klima den Menschen beeinflusst, war auch in früheren Perioden der Erdgeschichte das Klima ein wichtiger Faktor der auf den Planeten und dessen Organismen starken Einfluss nahm. Fast jedem sind Klimaereignisse aus der Vergangenheit bekannt, wie zum Beispiel das Aussterben der Dinosaurier, ausgelöst durch einen Meteoriteneinschlag (Abb. 3) oder die Eiszeit in der Mammuts und Säbelzahntiger die Erde besiedelten. Jedes dieser Ereignisse ist auf unterschiedliche langfristig wirkende Klimafaktoren zurückzuführen. Die größte Rolle spielt dabei die Sonne, aber auch die Atmosphäre mit ihrer Zusammensetzung, das Vorhandensein von Treibhausgasen, die Lage und Anordnung der Kontinentalplatten, der Vulkanismus sowie die Erdbahnparameter und extraterrestrische Einflüsse wie Supernovae oder die kosmische Strahlung sind zu beachtende Einflussgrößen.

Abb. 3 – Meteorit der auf die Erde zufliegt (Quelle: http://www.spektrum.de/news/brachte-dunkle-materie-diedinosaurier-um/1256147)

Methoden wie die Analyse von Klimaproxys und Klimazeugen wie Eisbohrkerne oder Seesedimente, radiometrische Datierungsmethoden oder auch die Analyse von Isotopenverhältnissen Wissenschaftler die damaligen Klimanutzen υm und Umweltbedingungen zu rekonstruieren und diese mit ihren Forschungsergebnissen zu korrelieren. So konnte unterschiedliche Zyklen aufgedeckt werden wie beispielsweise periodisch erfolgende Wiederholung von Eiszeiten oder Variationen in der chemischen Zusammensetzung der Erdatmosphäre im Verlauf der Erdgeschichte. Dabei richtet sich der Blick in der heutigen Zeit hauptsächlich auf die Konzentration des Treibhausgases Kohlenstoffdioxid in der Atmosphäre und den Einfluss des Menschen auf die Veränderung der Erdatmosphäre. All diese Themen sind Aufgaben der Paläoklimatologie und folglich die Grundlage dieser Arbeit nämlich der geochemischen und geophysikalischen Untersuchung lakustriner Sedimente im Süden der Iberischen Halbinsel zur Rekonstruktion der Klimaverhältnisse in der Zeitspanne des Quartär.

PALÄOKLIMA IM QUARTÄR

Das Paläoklima im Quartär ist durch klimatische Zyklen charakterisiert, Glaziale (Kaltzeiten) und Interglaziale (Warmzeiten) mit einer Dauer von jeweils etwa 100.000 Jahren. Die kälteren glazialen Perioden dauern etwa 80.000 bis 90.000 Jahre an und sind länger als die wärmeren interglazialen Perioden mit eine durchschnittlichen Länge Dauer von 10.000 bis 20.000 Jahren. Innerhalb eines Glazial gibt es signifikante paläoklimatische Unterschiede mit kälteren Perioden (Stadiale) und wärmeren Zeiten (Interstadiale). Suborbitale Klimaereignisse, bekannt als Dansgaard-Oeschger-Zyklen und Heinrich-Ereignisse unterbrechen die Glaziale in Intervallen mit Längen zwischen 90.000 bis 18.000 Jahren. Beide Phänomene wurden auf unterschiedliche Weise entdeckt. Die Dansgaard-Oeschger-Zyklen wurden an Isotopenverhältnissen in Bohrkernen aus dem grönländischen Eis abgeleitet und die Heinrich-Ereignisse aus Sedimentlagen (Heinrichlagen) in der Tiefsee des Nordatlantiks (Rabassa & Ponce, 2013).

DANSGAARD-OESCHGER-/HEINRICH-EREIGNISSE

Bei den Dansgaard-Oeschger-Ereignissen handelt es sich um 23 interstadiale Ereignisse zwischen etwa 1,15 Mio. und 10.000 Jahren, gekennzeichnet durch einen schnellen Anstieg des Sauerstoffisotopenverhältnisses im grönländischen Eis. Diese interstadialen Erwärmungen werden als Dansgaard-Oeschger-Ereignisse beschreiben, der gesamte klimatische Zyklus, welcher auch die nachfolgende Rückkehr zu glazialen Verhältnissen einschließt, bezeichnet man als Dansgaard-Oeschger-Zyklus. Die meisten Intervalle zwischen 1,15 Mio. und 20.000 Jahren sind durch niedrige bis moderate Schwankungen der solaren Einstrahlung in den höheren Breitengraden gekennzeichnet. Jedoch lassen die Sauerstoffisotopenverhältnisse auf einen Temperaturanstieg der Atmosphäre um mehr als 5 °C schließen, was eine Erhöhung der Temperatur in diesen Breitengraden um 30 bis 60 % entspricht (Cronin, 1999). Die Dauer dieser Ereignisse beträgt zwischen 2.000 und 3.000 Jahren, wobei die Temperatur allmählich oder stufenweise ansteigt und dann abrupt, in wenigen Jahrzehnten oder Jahrhunderten wieder auf glaziale Verhältnisse absinkt (Bond & Lotti, 1995). Während der Dansgaard-Oeschger-Ereignisse liegen zusätzlich eine stark erhöhte Schneeakkumulation (zweimal so hoch wie in

dazwischenliegenden Kälteperioden) sowie größere atmosphärische Turbulenzen vor (Cronin, 1999).

Die schnellen Klimaschwankungen in Intervallen von 5.000 bis 10.000 Jahren innerhalb des letzten Glazial sind in der Meeresfauna, den stabilen Isotopen und der Lithologie in der Tiefsee des Nordatlantiks gut erhalten. Helmut Heinrich entdeckte ein zyklisches Muster in den Perioden der beschleunigten Eisvorstöße und deren Abfluss ins Meer. Dabei brachen große Mengen an Eisbergen der vorrückenden Gletschermassen ab und drifteten über den Nordatlantik. Beim Abschmelzen der Eisberge sanken die eingeschlossenen Sedimente auf den Meeresboden, sogenannte "Ice Rafted Debris" (IRD) und bildeten die heute als Heinrichlagen bekannten Sedimentschichten (Heinrich, 1988). Es sind sechs Heinrichlagen im subpolaren Nordatlantik bekannt (H6-H1) welche auf ein Alter von 70.000 bis 14.000 Jahren datiert sind. Die jüngere Dryas vor rund 10.000 bis 11.000 Jahren wird als Heinrich-Ereignis Ho bezeichnet (Cronin, 1999).

Das Klima im Holozän

Die Iberische Halbinsel umfasst verschiedene biogeographische Regionen und lässt sich grob in vier verschiedene Klimazonen unterscheiden (Abb. 4).

Abb. 4- Klimazonen der Iberischen Halbinsel (Lautensach, 1964). (https://albertogarcia.files.wordpress.com/2008/11/mapa_espana_aridez.jpg)

In der mediterranen Zone an der Ost- und Südküste bis runter nach Gibraltar herrscht semiarides Mittelmeerklima mit heißen Sommern und warmen Wintern. In der sonnenreichsten Region Europas sinkt die Temperatur nie unter null Grad, jedoch gehen damit auch sommerliche Dürreperioden einher, welche dazu führen dass die Vegetation in Form von Nutzpflanzen künstlich bewässert werden muss. Das südöstliche Gebiet zwischen Alicante und Adra ist mit aridem Steppenklima der trockenste Teil der Halbinsel. Plötzliche und sehr starke Niederschläge entfallen meist auf das Frühjahr und führen zu heftigen Überschwemmungen (Lautensach, 1964; Schulten, 1974).

In der nördlichen humiden ozeanischen Zone welche die Nord- und die Westküste bis nach Porto beschreibt ist eine gleichmäßige Wärme mit verhältnismäßig kühlem Sommer, mildem Winter aber sehr hoher Feuchtigkeit vorherrschend. Die Niederschläge sind zu allen Jahreszeiten stark, besonders aber in den Sommermonaten. Der beständige Regen führt zu einem unterirdischen Wasserreichtum welcher in Form von Quellen und einer ausgeprägten Vegetation erkennbar ist (Schulten, 1974).

Unterhalb von Porto, über die Algarve in Südwest-Portugal bis nach Gibraltar findet man die südliche semihumide ozeanische Zone. Hier geht das atlantische Klima nach Süden in semiarides Klima über, welches aber unter dem atlantischen Einfluss milder und feuchter bleibt als in der Mediterranen Zone. Sie unterscheidet sich von der nördlichen ozeanischen Zone durch wärmere Sommer und mildere Winter, da sie durch ihre Gebirge vom Nordwind geschützt ist. Im Gegensatz zur mediterranen Zone an der Südküste regnet es hier häufiger, so dass die Vegetation sehr gut gedeihen kann und diese Zone zu einem fruchtbaren Land macht. Die Niederschläge fallen meist im Winter und sind in den Gebieten der Algarve und Nieder-Andalusien bei weitem nicht so hoch wie oberhalb von Porto (Lautensach, 1964; Schulten, 1974).

Im Landesinneren befindet sich die kontinentale Zone mit der Meseta, dem Hochland. Hier herrscht ein extremes Klima mit kurzen, sehr heißen Sommern und einem langen kalten Winter. Der Mangel an Niederschlägen führt ähnlich wie im Süden und Südosten zu einer beschränkten Vegetation. Nutzpflanzen können größtenteils nur durch künstliche Bewässerung erhalten werden (Schulten, 1974).

GEOGRAPHISCHER ÜBERBLICK

Die Iberische Halbinsel umfasst eine Festlandfläche von 581.680 km². Auf dieser Fläche befinden sich mit Spanien (492.712 km²), Portugal (88.968 km²), Andorra (468 km²) und dem britischen Gibraltar (6,5 km²) vier politische Territorien (Abb. 5). Mit den erwähnten 492.712 km² nimmt

Abb. 5 - Reliefkarte der Iberischen Halbinsel mit Staatsgrenzen (rot) und der Lage des Bohrgebietes in Andalusien (Quelle: stepmap.de).

Spanien etwa 85 % der Festlandfläche ein (Breuer, 2008).

Sechs Siebtel der Außengrenzen entfallen auf Küsten. Den restlichen Teil bildet die 700 km lange Kammlinie der Pyrenäen, welche die Iberische Halbinsel von Zentraleuropa abgrenzt. Im europäischen Kontext beschreibt die Iberische Halbinsel die südwestliche Außengrenze Europas. Die Straße von Gibraltar trennt schließlich den europäischen und den afrikanischen Kontinent. Dabei trennt die Meerenge von Gibraltar nicht nur geografisch zwei Kontinente, sondern ebenfalls zwei verschieden Kulturen, nämlich das islamisch-orientalische Nordafrika vom christlich-abendländischen Europa (Breuer, 2008).

GEOLOGISCHER ÜBERBLICK

Die Iberische Halbinsel ist im groben aus drei Elementen aufgebaut (Abb. 6). Der paläozoische Kern in Form des Iberischen Massivs (Meseta) ist eine Gebirgsblock, welcher während der Variszischen Orogenese vor etwa 345 bis 290 Mio. Jahren im oberen Karbon gebildet wurde und heute weitgehend abgetragen oder von jüngeren Schichten überdeckt ist. Die Pyrenäen im Nordosten, die Betische Kordillere im Südosten und das Katalanische Küstengebirge im Norden der Ostküste bilden die tertiären Faltengebirge. Alle drei Orogene sind Teil des alpidischen Faltengürtels der vor ungefähr 65 bis 24 Mio. Jahren im Tertiär entstanden ist. Das letzte Element bildet der Kontinentalrand auf der Westseite der Iberischen Halbinsel, welcher durch die Öffnung des Atlantiks vor 195 bis 100 Mio. Jahren im Jura und Kreide entstanden ist (Lautensach, 1964).

Abb. 6 - Geologische Karte der Iberischen Halbinsel (Lautensach, 1964).

ARBEITSGEBIET

LAGE DES ARBEITSGEBIETES

Das Arbeitsgebiet befindet sich in Westandalusien, im Süden Spaniens, also klimatisch gesehen in der südlichen ozeanischen Zone mit semiaridem Klima (Schulten, 1974). Genauer in der Provinz Cádiz etwa 15 km nördlich der gleichnamigen Stadt und ungefähr 10 km südwestlich von

Abb. 7 - Geographische Lage des Arbeitsgebietes auf der Iberischen Halbinsel (Quelle: ArcGIS).

Jerez de la Frontera entfernt, im Naturschutzgebiet "Complejo Endorreico del Puerto de Santa Maria" (Abb. 7).

In diesem Naturschutzgebiet, welches eine Fläche von 2,91 km² bedeckt, liegen drei Lagunen: Die "Laguna Salada", die "Laguna Chica" und die "Laguna Juncosa". Die "Laguna Salada" ist die größte der drei und trocknet genau wie die "Laguna Chica" in den Sommermonaten aus. In Perioden mit hohen Niederschlägen wird sie überschwemmt und das eingetragene Wasser wird über mehrere Wochen bis Monate gespeichert, da kein direkter Abfluss in Form eines Oberflächengewässers vorhanden ist. Die "Laguna Juncosa" dagegen ist aufgrund ihrer Größe nur bei lang anhaltendem Dauerregen temporär mit Wasser gefüllt. Sie liegt die restliche Zeit des Jahres trocken, was dazu führt, dass sie fast vollständig mit Vegetation bedeckt ist⁶. Dieses Naturschutzgebiet ist für verschiedene Vögel eine wichtige Anlaufstelle auf ihren Wanderungen und dient so der Erhaltung der teilweise gefährdeten Vogelarten.

Im Bereich der "Laguna Salada" wurden insgesamt fünf Bohrungen durchgeführt. Die Bohrkerne LSL 1 und LSL 2 konnten im September 2014 im Seezentrum genommen werden, da der See zu dieser Zeit aufgrund geringer Niederschläge ausgetrocknet war. Die Bohrungen LSL 3, LSL 4 und LSL 5 wurden im März 2015 am Gewässerrand abgeteuft (Abb. 8).

 ⁶ Vgl. Junta de Andalucía,
 URL:http://www.juntadeandalucia.es/medioambiente/servtc5/ventana/mostrarFicha.do?idEspacio=7363
 &Ig=EN (Stand 17.5.2015)

Abb. 8 - Die Lagunas des Complejo Endorreico del Puerto de Santa Maria mit Lage der Bohrpunkte (Quelle: ArcGIS). Koordinaten:

LSL 1/2: 36°38'37.4" N, 006°14'09.0" W LSL 3: 36°38'36.0" N, 006°14'01.6" W LSL 4: 36°38'57.5" N, 006°14'01.1" W LSL 5: 36°38'33.1" N, 006°14'00.2" W

LOKALE GEOLOGIE

Der größte Teil Andalusiens ist Bergland, im Nordwesten befindet sich das Mittelgebirge Sierra Morena und im Südosten die Betische Kordillere mit der Sierra Nevada. Zwischen den beiden Orogenen befindet sich das Becken des Guadalquivir, dem größten Fluss Andalusiens. An der südwestlichen Beckengrenze befindet sich das Untersuchungsgebiet (Abb. 9).

Abb. 9 - Untersuchungsgebiet (rot) im Guadalquivir-Becken mit den angrenzenden Orogenen Sierra Morena im Norden und Betische Kordillere im Süden (Tjalsma, 1971).

SIERRA MORENA

Die Sierra Morena bildet den Südsaum des Iberischen Massivs und grenzt Andalusien nach Norden hin über eine Strecke von fast 450 km von der spanischen Hochebene ab. Das Orogen entstand während der Alpidischen Faltung und diente hier als eine Art Widerlager für die sich unter dem Druck der Afrikanischen Platte auffaltende Gesteine, wobei sie entlang des Guadalquivir-Beckens angehoben wurde (Gibbons & Moreno, 2002; Lautensach, 1964).

Lithologisch betrachtet baut sich die Sierra Morena hauptsächlich aus präkambrischem und paläozoischem Gestein auf, welches teilweise metamorph überprägt wurde. Die vorkommenden Gesteine sind hauptsächlich Schiefer und Gneise, teilweise auch Granite (Lautensach, 1964).

BETISCHE KORDILLERE

Die Betische Kordillere, auch das spanische Faltengebirge genannt, entstand während der Alpidischen Orogenese, während der auch die Alpen, die Karpaten, der Apennin, der Kaukasus, sowie der Himalaya entstanden und ist damit aus geologischer Sicht ein junges Gebirge. Grund für die Auffaltung und Anhebung der Betischen Kordillere, ist die seit dem späten Mesozoikum bis heute andauernde Konvergenz der afrikanischen und iberischen Kontinentalplatten und die damit einhergehende Schließung des Tethysmeers (Kampschuur & Rondeel, 1974; Schöneberg & Neugebauer, 1997; Zitellini, et al., 2009). Die Betische Kordillere bildet den westlichsten Teil der europäischen Alpenkette und setzt sich in südwestliche Richtung über die Straße von Gibraltar im Marokkanischen Riff fort. Nach Nordosten bilden die Balearen mit Mallorca, Menorca, Ibiza, Formentera und Cabrera eine Verlängerung des Gebirgszuges (Schöneberg & Neugebauer, 1997).

Die Lithologie der Betischen Kordillere ist durch Material geprägt, welches im Mesozoikum als Sediment in der Tethys entstanden ist. Die Tethys trennte vor etwa 200 bis 150 Mio. Jahren den europäischen Kontinent vom afrikanischen, so wie es heute das Mittelmeer tut. Diese marine Herkunft ist Grund dafür, dass die Gesteine sehr kalkreich und fossilreich sind. Vorkommen des basischen Vulkangesteins Peridotit lassen weiterhin darauf schließen, dass es zu dieser Zeit auch submarinen Vulkanismus gegeben hat.

Das Orogen erstreckt sich parallel zur Mittelmeerküste über eine Länge von mehr als 600 km von der Bucht von Cádiz bis in die Region von Valencia. Die Sierra Nevada bildet das Zentrum der Gebirgskette und ist mit 3.478 m die höchste Erhebung auf der Iberischen Halbinsel (Schöneberg & Neugebauer, 1997).

Geologisch unterteilt man die Betische Kordillere in Internzone und Externzone. Die Internzone besteht aus 3 Teilen. Den über 100 km langen Kern bildet die Kuppel der Sierra Nevada. Sie ist bodenständig, was bedeutet dass sie bei der Gebirgsbildung am Ort ihrer Entstehung blieb. Oberhalb des Kerns befinden sich zwei weitere Einheiten, welche ortsfremd entstanden sind und durch horizontale Verschiebung an die heutige Position gelangten. Die Externzone wird in das Subbetikum, welches zwischen Jaén und dem Golf von Cádiz liegt und den Teil östlich von Jaén, das Präbetikum eingeteilt (Schöneberg & Neugebauer, 1997).

GUADALQUIVIR-BECKEN

Das Becken des Guadalquivir wird im Norden durch die Sierra Morena und im Süden durch die Betische Kordillere begrenzt und verläuft bis nach Antequera. Richtung Osten verläuft das Becken bis an den Saum der Sierra de Cazorla, nach Westen wird es breiter und läuft in den Golf von Cádiz und weiter in den Atlantik (Abb. 9). Man geht davon aus, dass das Guadalquivir-Becken während des Tertiärs als Seestraße diente, welche den Atlantik mit dem Mittelmeer verband, so wie es heute die Straße von Gibraltar tut (Tjalsma, 1971). Durch die Hebung der Sierra Cazorla am Ende des Miozäns wurde dieser Korridor geschlossen und es entstand eine Bucht in Richtung Westen die von Osten her immer weiter verlandet ist (Schulten, 1974).

Die Lithologie des Beckens wird durch marine Sedimente aus dem Neogen bestimmt da die Atlantikküste noch bis vor 2000 Jahren weiter landeinwärts lag (Gibbons & Moreno, 2002). Es wird als Vortiefe der Betischen Kordillere fast ausschließlich von betischen Flüssen durchzogen und bildet so das Molassebecken dieses Orogens, in welches das Erosionsmaterial abgelagert wird (Schöneberg & Neugebauer, 1997).

SALZSEEN IN SÜDSPANIEN

Seen werden durch interne und externe Kräfte wie Klima, Tektonik und geomorphologische Aktivitäten, Veränderungen der regionalen Vegetation und der aguatischen Biota sowie durch menschliche Aktivität beeinflusst (Martín-Puertas, et al., 2011). In Seen akkumulieren Sedimente aus der Umgebung und so können in Sedimentkernen Aufzeichnungen von der vorherrschenden Umweltbedingungen vorhanden sein. Dabei bestehen die Seesedimente aus zwei Grundkomponenten, dem allochthonen Material, welches seinen Ursprung außerhalb des Gewässers hat und dem autochthonen Material, das innerhalb des Sees produziert wird (Bradley, 1999). So können mit sedimentologischen Untersuchungen Schwankungen des Wasserstandes ermittelt werden, welcher in Beziehung zu Niederschlags- und Verdunstungsraten gesetzt werden kann. Durch Veränderungen des Wasserstandes kommt es weiterhin zu Schwankungen in der Salinität und Variationen in der Zusammensetzung der Sedimente (Battarbee, 2000). Diese beiden Parameter beeinflussen die Mineralogie und Geochemie in der aquatischen Umwelt und wirken außerdem auf die Organismen im Gewässer ein (Reed, et al., 2001). Die Akkumulationsraten in Seen sind häufig sehr hoch, wodurch diese Sedimente eine Möglichkeit bieten das Paläoklima mit einer sehr hohen Auflösung abzubilden, soweit man sie ausreichend genau datieren kann (Bradley, 1999).

Playa-Seen wie die Laguna Salada sind kleine, flache Wasserkörper ohne einen Abfluss in Form eines Fließgewässers die in sich semiariden und ariden Regionen befinden (Eugster, 1980; Battarbee, 2000). Aus diesem Grund werden die durch Erosion in Randgebieten eingetragenen Sedimente und Minerale abgelagert, ein Austrag erfolgt nicht (Thompson & Oldfield, 1986). Diese Gewässer durchlaufen jährliche oder mehrjährliche Zyklen der Austrocknung und Wiederauffüllung. Es sind saline Systeme in denen der Wasserkörper mit einem regionalem Grundwasserleiter verbunden ist, der Grundwasser in das System einleitet, einige Systeme können den Aquifer auch wieder auffüllen (Rodríguez-Rodríguez, 2007).

METHODEN IM FELD

Bohrmethodik

Bei dem genutzten Bohrsystem handelt es sich um eine Vibrationsbohrung. Die Technik wurde 1960 für die Untersuchung von Meerküsten- und Schelfgebieten entwickelt und ist während der letzten Jahrzehnte in der Paläolimnologie immer beliebter geworden. Grund dafür ist die gute Benutzerfreundlichkeit, sowie der verhältnismäßig leichte Transport des Bohrequipments. Mit diesem Bohrsystem lassen sich in unverfestigtem Sediment Tiefen von bis zu 15 m erzielen.

Das grundlegende Prinzip bei diesem Bohrverfahren beruht, wie der Name impliziert, auf Vibration. Dabei wird eine Vibrationseinheit, meist ein Betonrüttler mit einem kleinen Benzinmotor, in unserem Fall ein benzinbetriebener Aufbrechhammer Cobra, der Firma Atlas CopcoCobra, auf dem Bohrgestänge montiert. Diese führt hochfrequente Schlagbewegungen mit einer geringen Amplitude aus. Die erzeugten Vibrationen verflüssigen eine dünne (1 bis 2 mm) Schicht von wassergesättigtem Sediment an der Spitze des Bohrkopfes. Die Verflüssigung, sowie die damit einhergehende Verringerung der Sedimentfestigkeit ermöglicht es den Bohrkopf ohne zusätzlich zugefügte Kraft in den Boden zu treiben (Glew, et al., 2001).

Die hier genutzten Bohrsonden haben eine Länge von einem Meter, welche durch ein benzinbetriebenes hydraulisches Ziehgerät nach der Bohrung an die Oberfläche gezogen werden. Um auf die Bohrtiefe von mehr als 1 m zu kommen, wird nach jedem Bohrvorgang das Bohrgestänge um einen Meter erweitert und eine neue Bohrsonde eingesetzt.

Probleme bei dieser Methode treten durch den beim Rausziehen der Sonde entstehenden Rückfall auf. Dies ist Lockersediment, welches von den Seiten des Bohrlochs auf den Grund fällt. Am Ufer der Lagune war der Rückfall aufgrund der hohen Wassersättigung des Bodens sehr groß, in trockenem Sediment ist das Bohrloch stabiler und es entsteht somit weniger Rückfall. Um trotzdem eine durchgehende und ungestörte Sedimentabfolge zu bekommen muss die Sonde bei jedem Bohrvorgang wieder auf die vorherige Tiefe gebracht werden. Das aufgenommene Sediment, welches durch den Rückfall den Grund des Bohrlochs aufgefüllt hat, kann durch eine Öffnung am oberen Ende der Sonde wieder ausgedrückt werden. Zusätzlich wird eine zweite Bohrung durchgeführt, bei der die Sonden versetzt zur ersten Bohrung gewechselt werden. Die Bohrkerne werden im Nachhinein korreliert, wodurch die gestörten Schichten die beim Sondenwechsel entstehen sowie die eventuellen Bohrlücken, die nicht mit dem Sondenwechsel zu tun haben, durch ungestörtes Material ersetzt werden.

METHODEN IM LABOR

Die Bohrkerne (Liner) wurden nach Beendigung der Bohrkampagne in das Geologische Institut der Universität zu Köln transportiert und im Kühlraum bei 4 °C und geschützt vor Tageslicht gelagert. Im Weiteren wurden die einzelnen Liner mit einer Kreissäge vertikal geöffnet und mit einer Drahtschnur in zwei Hälften getrennt, so dass jeweils zwei Halbschalen vorlagen. Die eine Hälfte wurde zur Beprobung genutzt und die andere im Archiv eingelagert. In direktem Anschluss an die Öffnung wurde eine makroskopische Bohrkernbeschreibung durchgeführt. Die Kerne wurden daraufhin mit dem ITRAX XRF Kernscanner hochauflösend fotografiert und es wurde die magnetische Suszeptibilität gemessen. Die Arbeitshälften wurden anschließend in 6 cm mächtige Sedimentscheiben geteilt und in Probendöschen gefüllt. Nach der Messung des Nassgewichts der Proben wurden diese für mindestens 24 Stunden bei -20 °C gefroren und im Anschluss 72 Std. gefriergetrocknet.

MAKROSKOPISCHE BOHRKERNBESCHREIBUNG

Die makroskopische Beschreibung der Bohrkerne erfolgt nach den Kriterien von Martin Kehl vom Geographischen Institut der Universität zu Köln (Anhang: Abb. 13). Dabei wird der Bohrkern durch folgende Punkte beschrieben:

1. Bodenart

Die vorherrschende Bodenart im Sediment wird über die vorhandenen Korngrößenfraktionen bestimmt. Es wird zwischen Lehm, Sand, Schluff und Ton untergliedert und noch genauer in Grob-, Mittel-, und Feinfraktion.

2. Farbe

Die Bodenfarbe wird über die MUNSELL-Farbtafel bestimmt um einen möglichst exakten und reproduzierbaren Vergleich zu ermöglichen.

3. Untergrenze

Die unteren Grenzen der Lagen werden mit der Tiefe unter der Geländeoberfläche, sowie der Art des Übergangs zwischen den Lagen beschrieben.

4. Fleckung/Bänderung

Flecken die durch das Vorhandensein von Fe- und Mn-Hydroxiden, Karbonaten oder organischer Substanz auftreten, können Hinweise auf Veränderung des Sediments durch Prozesse der Bodenbildung geben. Man erfasst diese Flecken oder Bänderungen mit dem Flächenanteil, sowie der Größe.

5. Feuchte

Die aktuelle Feuchte wird grob in trocken, feucht, nass und wassergesättigt unterteilt.

6. Grobanteil

Der Grobanteil gibt an, in welchen Mengen sich Kies oder Gruskörner im Bohrkern befinden. Diese Partikel dienen als möglicher Hinweis für die vorherrschenden Sedimentations- und Verwitterungsbedingungen.

7. Karbonatgehalt

Der Gehalt an Karbonaten wird über die Behandlung mit Salzsäure (HCl) ermittelt, wobei Stärke und Dauer des Aufbrausens zur Klassifizierung genutzt werden.

8. Organikanteil

Der Anteil von organischer Substanz (Humus) kann bei einer feuchten Probe etwa anhand der Bodenfarbe geschätzt werden.

9. Bemerkung

Hier sollen alle Besonderheiten aufgelistet werden, wie beispielsweise das Auftreten von Wurzelwerk oder mögliche Bioturbation.

MAGNETISCHE SUSZEPTIBILITÄT

Die magnetischen Suszeptibilität (MagSus) eines Materials, ist eine physikalische Materialeigenschaft welche dessen Magnetisierbarkeit in einem homogenen Magnetfeld angibt (*Dearing*, 1999). Dabei werden zwei Typen der MagSus unterschieden:

Die volumen-spezifische magnetische Suszeptibilität κ ist dimensionslos und ist definiert als Magnetisierung *M* zur magnetischen Feldstärke *H*.

$$\kappa = \frac{M}{H}$$

Durch die Dichte ρ dividiert, ergibt sich die spezifische magnetische Suszeptibilität χ .

$$\chi = \frac{\kappa}{\rho}$$

Die Stärke der MagSus wird durch die Zusammensetzung, sowie die Häufigkeit und das magnetische Verhalten einzelner Elemente innerhalb des Materials bestimmt. Dabei existieren fünf verschiedene Typen von magnetischem Verhalten, wovon die ersten drei permanent sind (Dearing, 1999; Sherriff, 2014).

Antiferromagnetismus entwickelt eine niedrige MagSus. Hämatit (Fe₂O₃) ist ein Beispiel für ein antiferromagnetisches Gestein.

Ferromagnetismus bildet eine außergewöhnlich hohe MagSus, was nur selten in natürlichen Materialien auftritt. Ein Beispiel für einen Ferromagneten ist α-Eisen.

Ferrimagnetismus ist ebenfalls durch eine hohe MagSus gekennzeichnet. Das magnetische Verhalten wird jedoch nicht nur von den magnetischen Eigenschaften der einzelnen Atome beeinflusst, sondern beruht zusätzlich auf der Kristallgitterstruktur (Bruhn, 1967). Ein ferrimagnetisches Material ist Magnetit (Fe²⁺Fe₂³⁺O₄), welches hauptsächlich in magmatischen Gesteinen auftritt. Außerdem gehören zu den ferromagnetischen Stoffen Kobalt und Nickel (Glew, et al., 2001).

Diamagnetismus wird erzeugt, wenn ein äußeres Magnetfeld auf das Material einwirkt. Diamagnetische Minerale sind bspw. an Eisen arme Minerale wie Quarz (SiO₂) oder auch organische Substanzen und Wasser. Diamagnetismus ist charakterisiert durch sehr niedrige oder teilweise negative Werte der MagSus.

Paramagnetismus verhält sich bezüglich der MagSus ähnlich wie der Antiferromagnetismus, jedoch ebenfalls nur wenn ein externes Magnetfeld auf das Material einwirkt. Diamagnetismus tritt in einer Vielzahl von Mineralen auf, wie z. B. bei Biotit (K(Mg,Fe²⁺)₃(Si₃Al)O₁₀(OH,F)₂) oder Pyrit (FeS₂).

Die MagSus kann Aufschluss über Art und Herkunft von Ablagerungen innerhalb eines Sees geben, dabei wird die Mehrheit der magnetischen Minerale durch Erosion eingetragen und stammt ursprünglich aus dem Muttergestein, dem Unterboden oder dem Oberboden innerhalb des Drainagebereichs des Gewässers. Weiterhin können durch die Atmosphäre magnetische Stoffe in die Seesedimente gelangen, so beispielsweise durch Aerosole von Vulkanausbrüchen oder durch Partikel die durch anthropogene Aktivitäten entstehen (Sandgren & Snowball, 2001). Außerdem können Informationen über Mineralogie und Geochemie des beprobten Materials gewonnen werden, sowie durch Variation in der gemessenen Stärke Hinweise auf eine Veränderung der Umweltbedingungen interpretiert werden (Dearing, 1999; Evans & Heller, 2003). So stehen hohe MagSus-Werte im Zusammenhang mit der durch Abholzung von Wäldern entstehenden erhöhten Bodenerosion (Thompson, et al., 1975). Ebenfalls können die Auswertungen der MagSus zur Korrelation verschiedener Bohrkerne herangezogen werden um Datenlücken zu schließen (Nowaczyk, 2001).

Messmethodik

Die MagSus wurde mit Hilfe des Multisensor Core Logger (MSCL) der Firma Geotek, mit einer Auflösung von 1 cm gemessen. Zur MagSus-Messung wurde der am Helmholtz Zentrum in Potsdam entwickelte 2. Generation Halbschalen-Kernlogger (scl-2.3) genutzt. Die Messung wurde mit einen Barington MS2E Punktsensor durchgeführt (Einstellungen Anhang: Abb. 14)

CNS-ANALYSE

Eine repräsentative Menge der gefriergetrockneten Proben wurde mit Hilfe eines Achat-Mörsers auf eine Partikelgröße von Schluff/Silt (0,002 – 0,063 mm) gemahlen. Zur Bestimmung des Gehaltes an Gesamtkohlenstoff (TC = Total Carbon), Gesamtstickstoff (TN = Total Nitrogen) und Gesamtschwefel (TS (Total Sulfur) wurden jeweils 10 mg der 175 gemahlenen Sedimentproben im Vario MICRO Cube Mikro-Verbrennungs-Elementaranalysator der Firma Vario Corp. genutzt. Dafür wurde die einzelnen Probenmengen auf 0,005 mg genau eingewogen, in Zinnschiffchen gefüllt und mit ca. 20 mg Wolfram(VI)-Oxid gemischt um eine vollkommene Verbrennung zu gewährleisten. Die Schiffchen wurden zusammengefaltet, im Anschluss im Autosampler des Vario MICRO Cube positioniert und automatisch gemessen. Um Messfehler zu vermeiden wurden jeweils nach zehn Proben zwei Blindproben eingefügt, welche mit dem Standard LKSD-3 oder dem Standard EM-4 befüllt sind, die einen definierten Gehalt an TC, TS und TN aufweisen.

Messmethodik

Die zu analysierende Substanz wird durch eine explosionsartige Verbrennung bei ca. 1150 °C in einer mit Sauerstoff hoch angereicherten Helium-Atmosphäre aufgeschlossen. Bei dieser Verbrennung werden die Elemente C, N und S in die Verbrennungsprodukte CO₂, N₂, NO₂, SO₂, SO₃ sowie in flüchtige Halogenverbindungen umgewandelt, im Falle das Halogene in der beprobten Substanz vorhanden sind. Das Zinnschiffchen verbrennt zu SnO₂ und wird im Aschefinger des Verbrennungsrohres aufgefangen. Durch Kupfer im nachgeschalteten Reduktionsrohr werden, bei einer Temperatur von etwa 850 °C, die im Verbrennungsgas enthaltenen Stickoxide und Schwefeloxide zu N₂ und SO₂ reduziert. So verbleiben nur noch die Analysegase CO₂, N₂ und SO₂ im Helium-Trägergasstrom. Die weitere Auftrennung der einzelnen Bestandteile erfolgt über Trennsäule. Die Detektionseinheit bildet eine hochempfindliche Wärmeleitfähigkeitsmeßzelle (WLD), welche die gemessenen Signale auf einem Bildschirm abbildet.⁷

⁷ Vgl. Elementar vario MICRO cube – Anleitung.

Ergebnisse

STRATIGRAPHIE

Um einen weitestgehend vollständigen Bohrkern zu erhalten wurden die Bohrungen LSL 1 und LSL 2, welche im Zentrum des Laguna Salada genommen wurden korreliert. Der daraus entwickelte Bohrkern bildet die Sedimentabfolge bis in eine Tiefe von 11,7 m ab, wobei nicht abzudeckende Lücken von 0,92-1,01 m, 1,97-2,00 m, 3,99-4,00 m, 4,50-5,00 m, 5,78-7,01 m, 8,63-9,01 m, 9,99-10,02 m und 10,99-11,01 m liegen.

Die Farbe der Sedimente wurde mit Hilfe der MUNSELL-Farbtafel beschrieben. Die Bereiche in weiß sind Sedimente die dem Rückfall zuzuschreiben sind und daher aus der Betrachtung hinaus fallen. Hauptsächlich schwankt die Bodenfarbe im Bohrkern zwischen Hellgrau und Dunkelgrau. Ausnahmen sind im Bereich um 1,75 m Tiefe sowie zwischen 7,25 m und 8 m zu erkennen (Abb. 10), hier liegt der Farbton im Gelblichen bis Braunen. Ebenfalls zwischen 5 m und 5,20 m sowie von 7 m bis 7,25 m Tiefe sind Abweichungen zu erkennen. Hier weißt das Sediment einen hellgrün bis gelben, bzw. dunkelgrünen Farbton auf. Allgemein weist das Sediment in vielen Bereichen Fleckungen auf die zwischen <2 aber auch > 30% der Fläche bedecken und eine Größe von 2 bis 6 mm sowie mehr als 20 mm erreichen.

Die Bodenart im gesamten Bohrkern ist als Ton, genauer als Lehmton zu definieren. Dabei sind Sandkörner in den meisten Bereichen nicht sichtbar oder fühlbar, teilweise können Gruskörner (gerundete oder scharfkantige Partikel mit Korndurchmessern von mehr als 2 mm) einen Flächenanteil von bis zu 30 % erreichen.

Der Karbonatgehalt im Boden schwankt zwischen sehr schwach (< 0,5 %) und deutlich (2-10 %). Die Menge an organischer Substanz bewegt sich zwischen sehr schwach humos (< 1 %) und mittelhumos (2-4 %). In vielen Bereichen sind Schalenrückstände, organisches Material, Gipsflecken oder -kristalle sowie Anzeichen von Bioturbation zu erkennen.

Eine genauere Analyse befindet sich im Anhang Tab. 1

Abb. 10 - Stratigraphie nach Korrelierung der Bohrkerne LSL 1 und LSL 2 mit Angaben zum Farbverlauf und zur Bodenart

MAGNETISCHE SUSZEPTIBILITÄT

Die magnetische Suszeptibilität (MagSus) bewegt sich über den gesamten Bohrkern zwischen 0,7 (9,01 m) und 13,5 (2,20 m) (Anhang: Tab. 2). Die Lücken von 0,92-1,01 m, 1,97-2,00 m, 3,99-4,00 m, 4,50-5,00 m, 5,78-7,01 m, 8,63-9,01 m, 9,99-10,02 m und 10,99-11,01 m sind Bereiche in

Abb. 11 - Darstellung der magnetischen Suszeptibilität (MagSus) in den Sedimenten der Laguna Salada aus einer Tiefe von o bis 11,7 m.

denen eine Beprobung nicht möglich war. Wie in Abb. 11 zu erkennen schwankt die MagSus in den oberen 7,70 m etwa zwischen 5 und 10. Deutlich abweichende Werte sind bei 0,01 m (2,5), 0,34 m (11,5), 1,42 m (11,7), 2,20 m (13,5), 2,50 m (3), 3,51 m (3,3), 3,67 m (11,8) und 3,89 m (11,8) zu sehen. Die Werte unterhalb von 7,70 m sind hauptsächlich niedriger als 5, Ausnahmen sind bei 10,80 m (6,4) und 10,82 m (6,9) zu finden. Ab 11,38 m steigen die Werte wieder leicht bis auf 7,6 (11,56 m) und sinken danach wieder ab.

CNS-ANALYSE

In Abb. 12 ist dargestellt wie viel Gew.-% Kohlenstoff (C), Stickstoff (N) und Schwefel (S) in den Sedimenten der Laguna Salada eingespeichert sind (Anhang:

Tab. 3). Die Lücken von 0,92-1,01 m, 1,97-2,00 m, 3,99-4,00 m, 4,50-5,00 m, 5,78-7,01 m, 8,63-9,01 m, 9,99-10,02 m und 10,99-11,01 sind Bereiche in denen eine Beprobung nicht möglich war, da der Bohrkern Lücken aufgewiesen hat. Der Anteil an Kohlenstoff bewegt sich zwischen 3,10 und 6,33 Gew.-%. Bis zur Bohrtiefe von etwa 6 m liegen die Werte hauptsächlich unterhalb von 5 Gew.-%, im weiteren Verlauf größtenteils oberhalb von 5 Gew.-%. Es sind deutliche Ausschläge nach unten bei 1,56 m (3,10 Gew.-%), 6,18 m (3,50 Gew.-%) und 11,46 m (3,93 Gew.-%) zu erkennen. Auf einer Tiefe von 2,82 m gibt es den ersten größeren Ausschlag im oberen Bereich der sich mit 5,58 Gew.-% deutlich absetzt. In einer Tiefe von 9,78 m befindet sich der höchste Peak mit einem Wert von 6,33 Gew.-%, gefolgt von einem weiteren Spitzenwert bei 10,86 m (6,14 Gew.-%).

Stickstoff ist in Mengen von 0,00 bis 0,24 Gew.-% in den Sedimenten vorhanden. Auffällig sind dabei die sehr niedrigen Werte (<0,04 Gew.-%) bis zu einer Tiefe von 6,78 m. Ausnahme stellt dabei nur der Bereich zwischen 0 und 0,24 m dar in denen Werte bis 0,21 Gew.-% gemessen wurden. Im unteren Bereich des Bohrkerns springen die Stickstoffanteile zwischen 0,2 und 0,13. Ab einer Tiefe von 9,00 m steigt die gemessene Menge an Stickstoff relativ gleichmäßig an bis sie bei 10,26 m den absoluten Spitzenwert von 0,24 Gew.-% erreicht und dann wieder abnimmt. Bei 11,22 m Tiefe fällt Wert abrupt von 0,17 auf 0,02 ab.

Die Werte an gemessenem Schwefel variieren von 0,052 bis 2,427 Gew.-%. Zu beachten ist der Bereich zwischen o und 2,58 m Tiefe, wo die Werte vermehrt extreme Peaks ausbilden. So zu erkennen bei o m mit dem Höchstwert von 2,427 Gew.-% und weiter bei 0,24 m (1,792 Gew.-%), 0,66 m (2,338 Gew.-%), 1,02 m (1,691 Gew.-%), 1,56 m (0,913 Gew.-%), 1,68 m (0,902 Gew.%) und 2,52 m (0,751 Gew.-%). Bis zu einer Tiefe von 7,02 m liegen die Werte unterhalb von 0,16 Gew.-%. Ab 7,74 m Tiefe steigen die Werte langsam bis auf 0,884 Gew.-% (8,16 m) an und fallen danach langsam wieder ab.

Abb. 12 - Darstellung des TC, TN und TS in Gew.-% in den Sedimenten der Laguna Salada aus einer Tiefe von o bis 11,76 m.

DISKUSSION UND INTERPRETATION

Die magnetische Suszeptibilität (MagSus) wird am häufigsten bei der Korrelation von Sedimentkernen genutzt um verschiedene Bohrkerne zu verspleissen und ein durchgängiges Sedimentprofil zu erhalten. Außerdem kann die MagSus auch zur Korrelation mehrerer Sedimentkerne dienen, die aus demselben Ablagerungsbereich stammen, bzw. mit ähnlichen klimatischen Bedingungen und Liefergesteinen (Nowaczyk, 2001). Darüber hinaus kann die MagSus Anzeiger für den Wechsel von Warm- und Kaltphasen sein. Dabei bilden erhöhte Werte die Interstadialen und niedrige Werte die Stadialen ab (Voelker, et al., 2000). Außerdem können erhöhte Werte der MagSus mit erhöhtem Staubeintrag in Verbindung gebracht werden (Bloemendal, et al., 1992) oder Aschelagen von Vulkanausbrüchen anzeigen (Zolitschka, 1998; Brauer, et al., 1999). In den Bereichen zwischen 1,70 m und 2,00 m sowie von 7,30-8,00 m weisen die Sedimente eine bräunlich-rötliche Farbe auf, was auf eine erhöhte Anwesenheit von Eisen hindeutet (Blum, 2007). Diese Vermutung kann jedoch durch die gemessene MagSus in diesen Wertebereichen nicht nachgewiesen werden. Die gemessene MagSus liegt mit 0,7 und 13,5 in einem sehr niedrigen Wertebereich, was auf Anteile von antiferromagnetischen Mineralen (Eisenoxide wie Hämatit oder Goethit) oder paramagnetischen Mineralen (eisenhaltige Minerale und Salz, wie Biotit, Olivin oder Eisensulfate) hindeutet (Dearing, 1999) oder aber durch die geringe Gesamtmenge an magnetisierbaren Mineralen erklärt werden kann. Die Variationen in der MagSus können durch Korngrößenunterschiede hervorgerufen werden (Cohen, 2003), da es sich im gesamten Profil um Lehmtone handelt und es keine Unterschiede in der Korngröße gibt ist dies auszuschließen. Im Weiteren können MagSus-Werte die Erosionsraten abbilden (Thompson, et al., 1975). So können die niedrigeren Werte unterhalb von 7,60 m auf geringere Erosionsraten zurückzuführen sein, wogegen die jüngeren Sedimente auf erhöhte Erosionsraten schließen lassen. Erhöhte Erosionsraten können jedoch in verschiedenen Klimaten auftreten. So kann ein kaltes Klima, mit weniq Vegetation, als auch sehr heiße, aride Klimate zu hohem Bodenabtrag führen. Eine dichte Vegetation führt dagegen eher reduzierende Erosionsbedingungen herbei und spricht für ein wärmeres feuchtes Klima (Haberzettl, et al., 2007) in den Bereichen unterhalb von 7,60 m.

Das Vorhandensein von Stickstoff, zusammen mit Phosphor und Silizium, ist einer der limitierende Faktor für die Produktion organischen Materials, in vielen Seen sogar der Hauptfaktor (Talbot, 2001). Genau wie die Kohlenstoffgehalte stehen Stickstoffgehalte in direktem Zusammenhang mit der Menge an organischem Material in Seesedimenten, da Stickstoff in den mineralischen Sedimentanteilen normalerweise fast gar nicht vorkommt. Somit sind erhöhte Werte von Kohlenstoff und Stickstoff Indikatoren für einen Anstieg in der Menge vom organischem Material (Meyers & Teranes, 2001). Um die Herkunft des organischen Materials zu bestimmen, also ob es sich um autochthone (Gefäßpflanzen) oder um allochthone organische Sedimentbestandteile (Algen) handelt, müsste man das atomare Verhältnis von organischem Kohlenstoff (TOC) zu Stickstoff berechnen. Während das atomare Verhältnis bei Gefäßpflanzen über 20 liegt, variieren die Werte für Algen zwischen 4 und 10 (Meyers & Teranes, 2001). Aber auch ohne die genauen Anteile von organischem Kohlenstoff am Gesamtkohlenstoff lassen die gemessenen Werten im oberen Bereich, da kein Stickstoff vorhanden ist, eher auf organisches Material aus Gefäßpflanzen schließen, wogegen in den unteren Bereichen ab 7,60 m sowie innerhalb der ersten 0,20 m die Stickstoffwerte zunehmen und so auf einen erhöhter allochthonen Eintrag hindeuten. Im Weiteren lassen die erhöhten Werte von Stickstoff und das damit verknüpfte Vorhandensein von organischem Material in Form von Algen auf ein feuchtes Klima schließen, da dieses zu einem erhöhten Eintrag von Nährstoffen in das Gewässer beiträgt (Meyers & Lallier-Vergès, 1999).

Die erhöhte Menge an gemessenem Schwefel deutet zusammen mit der sehr dunklen Färbung der Sedimente in den Bereichen oberhalb von 1,10 m und unterhalb von 8,25 m auf ein anoxisches Milieu hin (Peck, et al., 2002; Melles, et al., 2007). Außerdem liegt Schwefel in Evaporationsseen, wie der Laguna Salada, hauptsächlich als Gips (CaSO₄) vor, welches als Resultat einer Übersättigung ausgefällt wird. Diese Übersättigung tritt vorwiegend nach Perioden starker Verdunstung auf in denen der Wasserspiegel abgesenkt wird (Hardie, et al., 1978).

SCHLUSSFOLGERUNG UND AUSBLICK

Die gemessenen Werte von Kohlenstoff, Stickstoff und Schwefel sowie die Daten der magnetischen Suszeptibilität lassen keine detaillierten Rückschlüsse auf Klimaveränderungen oder die Art der Vegetation zu. Um genauere Erkenntnisse zu erlangen wäre die Messung des organischen Kohlenstoffanteils nötig um durch das Verhältnis Stickstoff auf die Herkunft des organischen Materials schließen zu können (Meyers & Teranes, 2001). Zusätzlich könnte durch den Nachweis von Holzkohleanteilen in Verbindung mit der magnetischen Suszeptibilität auf das Vorhandensein von Vegetation in Verbindung mit einer Trockenzeit mit hohen Temperaturen geschlossen werden (Whitlock & Anderson, 2003). Außerdem wären durch die Analyse des Vorkommens von C3 oder C4 Pflanzen Rückschlüsse auf Wechsel zwischen glazialen und interglazialen Phasen oder auf Variationen von trockenen und feuchten Zyklen möglich (Meyers & Lallier-Vergès, 1999). Zur genauen Datierung wären eine Auswertungen der Isotopenverhältnisse nötig.

QUELLEN

Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. In: *Quaternary Science Reviews, Vol. 19.* Amsterdam: Elsevier Scientific Publishing Company.

Bloemendal, J., King, J. W., Hall, F. R. & Doh, S.-J., 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. *Journal of Geophysical Research: Solid Earth, Vol. 97.*

Blum, W. E. H., 2007. Bodenkunde in Stichworten. Stuttgart: Borntraeger.

Bond, G. C. & Lotti, R., 1995. Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation. In: *Science, Vol. 267.* Washington: American Association for the Advancement of Science.

Bradley, R. S., 1999. Paleoclimatology - Reconstruction Climates of the Quaternary. In: *International Geophysics Series, Vol. 64.* San Diego: Academic Press.

Brauer, A. et al., 1999. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. In: *Quaternary Science Reviews, Vol. 18.* Amsterdam: Elsevier Scientific Publishing Company.

Breuer, T., 2008. Iberische Halbinsel. Darmstadt: Wissenschaftliche Buchgesellschaft.

Bruhn, J., 1967. *Physik in Stichworten, Teilband 1: Mechanik und Wärmelehre, Elektrizitätslehre und Magnetismus.* Kiel: Verlag Ferdinand Hirt.

Cohen, A. S., 2003. *Paleolimnology: The History and Evolution of Lake Systems*. New York: Oxford University Press.

Cronin, T. M., 1999. Principles of Paleoclimatology. New York: Columbia University Press.

Dearing, J., 1999. *Environmental Magnetic Susceptibility - Using the Barington MS2 System*. London: British Library.

Eugster, H. P., 1980. Geochemistry of evaporitic lacustrine deposits. In: *Annual Review of Earth and Planetary Sciences, Vol. 8.* Kalifornien: Annual Reviews Inc..

Evans, M. E. & Heller, F., 2003. Environmental Magnetism - Principles and Applications of Enviromagnetics. In: *International Geophysics, Vol. 86.* Amsterdam: Elsevier Scientific Publishing Company.

Gibbons, W. & Moreno, T., 2002. *The Geology of Spain.* London: Geological Society of London.

Glew, J. R., Smol, J. P. & Last, W. M., 2001. Sediment core collection and extrusion. In: W. M. Last & J. P. Smol, Hrsg. *Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques*. Dordecht: Kluwer Academic Publishers.

Haberzettl, T. et al., 2007. Lateglacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. *The Holocene, Vol. 17 (3).*

Hardie, L. A., Smoot, J. P. & Eugster, H. P., 1978. Saline Lakes and their Deposits: A Sedimentological Approach, in Modern and Ancient Lake Sediments. Oxford: Blackwell Publishing Ltd..

Heinrich, H., 1988. Origin and consequence of cyclic ice rafting in the north-east Atlantic Ocean during the past 130,000 years. In: *Quaternary Research*. Amsterdam: Elsevier Scientific Publishing Company.

Kampschuur, W. & Rondeel, H. E., 1974. The Origin of the Betic orogen, southern Spain. In: *Tectophysics, Vol. 27 (1).* Amsterdam: Elsevier Scientific Publishing Company.

Lautensach, H., 1964. *Die Iberische Halbinsel.* München: Keysersche Verlagsbuchhandlung München.

Martín-Puertas, C. et al., 2011. Geochemical processes in a Mediterranean Lake: a highresolution study of the last 4,000 years in Zoñar Lake, southern Spain. In: *Journal of Paleolimnology, Vol. 46.* Berlin: Springer-Verlag.

Melles, M. et al., 2007. Sedimentary geochemistry of core PG1351 from Lake El'gygytgyn - a sensitive revord of climate variability in the East Siberian Arctic during the past three glacial-interglacial cycles. In: *Journal of Paleolimnology*. Berlin: Springer Verlag.

Meyers, P. A. & Lallier-Vergès, E., 1999. Lacustrine sedimentary organic matter records of Late Quaternary. In: *Journal of Paleolimnology, Vol. 21.* Dordrecht: Kluwer Academic Publishers.

Meyers, P. A. & Teranes, J. L., 2001. Sediment organic matter. In: W. M. Last & J. P. Smol, Hrsg. *Tracking Environmental Change Using Lake Sediments, Volume 2: Physical and Geochemical Methods.* Dordrecht: Kluwer Academic Publishers.

Nowaczyk, N. R., 2001. Logging of magnetic susceptibility. In: W. M. Last & J. P. Smol, Hrsg. *Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques.* Dordrecht: Kluwer Academic Publishers.

Peck, J. A. et al., 2002. Mid to Late Holocene climate change in north central Mongolia as recorded in the sediments of Lake Telmen. In: *Palaeogeography Palaeoclimatology Palaeoecology, Vol. 183.* Amsterdam: Elsevier Scientific Publishing Company.

Rabassa, J. & Ponce, J. F., 2013. The Heinrich and Dansgaard-Oeschger climatic events during Marine Isotopic Stage 3: Searching for appropriate times for human colonization of the Americas. In: *Quaternary International, Vol. 299.* Amsterdam: Elsevier Scientific Publishing Company.

Reed, J. M., Stevenson, A. C. & Juggins, S., 2001. A multi-proxy record of Holocene climatic change in southwestern Spain: the Laguna de Medina, Cádiz. *The Holocene, Vol.* 11 (6).

Rodríguez-Rodríguez, M., 2007. Hydrogeology of ponds, pools, and playa-lakes of southern Spain. In: *Wetlands, Vol. 27 (4).* Berlin: Springer-Verlag.

Sandgren, P. & Snowball, I., 2001. Application of mineral magnetic techniques to paleolimnology. In: W. M. Last & J. P. Smol, Hrsg. *Tracking Environmental Change Using Lake Sediments Volume 2: Physical and Geochemical Methods.* Dordrecht: Kluwer Academic Publishers.

Schöneberg, R. & Neugebauer, J., 1997. *Einführung in die Geologie Europas*. Freiburg: Rombach Verlag.

Schulten, A., 1974. Iberische Landeskunde. In: Baden-Baden: Verlag Valentin Koerner.

Sherriff, S. C., 2014. Environmental Magnetism - Sediment Source Tracing. In: *Geomorphological Techniques.* London: British Society for Geomorphology.

Talbot, M. R., 2001. Nitrogen isotopes in Palaeolimnology. In: W. M. Last & J. P. Smol, Hrsg. *Tracking Environmental Change Using Lake Sediments, Volume 2: Physical and Geochemical Methods*. Dordrecht: Kluwer Academic Publishers.

Thompson, R., Batterbee, R. W., O'Sullivan, P. E. & Oldfield, F., 1975. Magnetic susceptibility of lake sediments. In: *Limnology and Oceanography, Vol. 20*. s.l.:Association for the Sciences of Limnology and Oceanography, Inc..

Thompson, R. & Oldfield, F., 1986. Mineral magnetic studies of lage sediments. In: *Environmental magnetism*. London: Allen and Unwin.

Tjalsma, R., 1971. Stratigraphy and Foraminifera of the Neogene of the eastern Guadalquivir basin (southern Spain). In: *Utrecht Micropaleontological Bulletins*. Langbroek-Utrecht: Schotanus & Jens.

Voelker, A. H. L., Grootes, P. M., Nadeau, M.-J. & Sarnthein, M., 2000. Radiocarbon levels in the Iceland Sea from 25-53 kyr and their link to the earth's magnetic field intensity. In: *Radiocarbon, Vol. 42 (3).* Tucson: The University of Arizona.

Whitlock, C. & Anderson, R. S., 2003. Fire History Reconstructions Based on Sediment Records from Lakes and Wetlands. In: *Ecological Studies, Vol. 160.* New York: Springer New York.

Zitellini, N. et al., 2009. The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. In: *Earth and Planetary Science Letter, Vol. 280 (1-4).* Amsterdam: Elsevier Scientific Publishing Company.

Zolitschka, B., 1998. Paläoklimatische Bedeutung laminierter Sedimente. In: *Relief Boden Palaeoklima, Band 13.* Stuttgart: Borntraeger.

	Anleitungen zur makroskopischen Beschreibung des Bohrkerns
	1. Laufende Nr. der Lage
	Zur Abgrenzung von Sedimentlagen (=sedimentäre Schichten und Bodenhorizonte)
Anleitung zur makroskopischen Beschreibung von Bohrkernen im Gelände	Vor der Aufnahme wird der Kern mit dem Kittmesser gereinigt und quer zur Vortriebrichtung geglättet. Nach dem ersten Gesamteindruck - insbesondere unter Berücksichtigung der Fache, Fleckung und Körnung - wird eine Unterteilung des Kernabschnittes in Lagen vorgenommen. Während der anschließenden Inventur der im Aufnahmeprotokoll zusammengestellten Sedimentmerkmale kann ggf. noch eine Revision der Lagenabgrenzung vorgenommen werden.
	2. Untergrenze
	Die Untergrenzen der Lagen werden mit Tiefe unter Geländeoberfläche und Art des Übergangs (Tab. 1) festgehalten. Tab. 1: Beschreibung der Art des Übergangs an Untergrenzen von Lagen
Martin Kehl	Art des Ubergangs Code Innerhalb Scharf 5 0-1 cm Deutlich De 1-3 cm Allmählich A 3-6 cm Diffus Di > 6 cm
Universität zu Köln, Geographisches Institut	3. Farbe
	Die Farbbestimmung kann durch Vergleich mit MUNSELL-Farbtafeln möglichst exakt und reproduzierbar vorgenommen werden. Dabei sind im feuchten Zustand des Sediments folgende Farbkomponenten zu bestimmen:
In der Fassung vom 1.10.2010	Farbton – Hue
	Entspricht bestimmten Ausschnitten aus dem sichtbaren Farbspektrum bzw. den Seiten der Tafel.
	Farbhelligkeit - Value
	Entspricht Gesamtintensität der Reflexion (Höhe des Schwarz- und Weißanteils) bzw. den Zeilen jeder Farbtafel-Seite.
	Farbtiefe - Chroma
	Entspricht der Breite des Ausschnittes bzw. Spalten jeder Farbtafel-Seite.
	Der vollständige Code einer Farbbestimmung ist bspw. 7.5YR 3/4 oder 10YR 5/3.
-	6

Fleckung, Bänderung

hervor und können wichtige Hinweise auf die Veränderung des Sediments durch Prozesse der Bodenbildung geben. Zudem können sie die Lage des aktuellen oder ehemaligen Grundwasserschwankungsbereichs sowie von Stauwasserhorizonten anzeigen.

Die Flecken werden näherungsweise nach Flächenanteil und Größe erfasst:

Tab. 2: Flächenanteil der Flecken

%	0	<2	2-10	10-30	> 30		Mm	<2	2-6	6-20	~ 20
Beschreibung	Keine	Sehr wenige	Wenige	Viele	Sehr viele		Beschreibung	Sehr fein	Fein	Mittelgroß	Crop
Code	K	S	w	^	SV	Tab. 3: Größe der Flecken	Code	SF	L	MG	0

Feuchte

Die aktuelle Feuchte wird grob nach trocken, feucht, nass und wassergesättigt differenziert. Dazu von unten leicht gegen die Kernsonde klopfen. Bei Wassersättigung tritt Wasser an der Oberfläche des gesäuberten Kerns auf.

Bodenart

Die in Sedimenten und Böden vorkommenden Korngrößen werden folgenden Größenklassen zugeordnet:

Korngrößenfraktionen des Feinbodens (Ø unter 2 mm) Tab. 4:

00 – 63 Sand (S) 63 – 2 Schluff (U) < 2 Ton (T)	2000-630 gS 63-20 gU 2,0-0,63 gT	630-200 mS 20-6,3 mU 0,63-0,20 mT	200-63 fs 63-2 fil <0.20 fT
Fraktion (µm) 2000 – 63 Sand	Grob- 2000 - 630	Mittel- 630 - 200	Fein- 200 - 63

Für die Definition der einzelnen Bodenarten des Feinbodens sind die Fraktionen Ton (T), Schluff (U) und Sand (S) maßgebend. Nach dem Vorherschen einzelnen Fraktionen werchen die Bodenartenhauptgruppen der Bode. Schluffer und Tone unterschieden. Eine weitzen Hauptgruppe bilden die Lehme, die in ihren Eigenschaften zwischen den erstgenannten Hauptgruppen stehen. Die Bodenartenhauptgruppen und -untergruppen (adjetz. Zusatz von s-sandig. I=lehmig. u=schluffig. t-tonng) werden in Form eines Werteidsdagrammes (s. Abz.) Noer tabellarisch dargestellt. Die Kömung des Feinbodens (Partikel < 2 mm) wird im Gelände mit der Fingerprobe ermittelt:

	n Versuch
Ausrollbarkeit ²)	zerhrörkelt heir
Formbarkeit (-ht ausrollhar
Kriterium	Nin

- 0 4 3 5 4 0
- Nicht ausrollbar, zerbröckelt beim Versuch Nicht ausrollbar, da die Probe vorher reißt und bricht Ausrollen schweisig, da die Probe starke Neigung zum Reißen und Brechen aufweist Ohne grüßere Schwierigkeiten ausrollbar, da die Probe nur schwach reißt oder bricht Leicht ausrollbar, da die Probe nicht reißt oder bricht Auf dünner als halbe Bleistiftstärke ausrollbar

¹ Bewertung der Formbarkeit und Ausrollbarkeit einer Probe auf halbe Bleistiftstärke

ungsschlüssel (FS = Feinsubstanz, hier Schluff und Ton) Tab. 6: Bestimm

Haupt- gruppe	Gruppe	Boden- art	Bindig- keit	Form- barkeit	Körnigkeit	Weitere Erkennungs- merkmale
Sande	Rein- sande	S	0	0	Nur Sandkörner, ohne erkennbare FS	In Fingerrillen haftet keine oder kaum FS
	Lehm- sande	Su2	0	0	Sandkörner gut sicht- und fühlbar, sehr wenig FS	In Fingerrillen haftet sehr wenig FS
		sl2	1	1-2	Sandkörner deutlich sicht- und fühlbar, sehr wenig FS	In Fingerrillen haftet wenig FS
		SI3	2	e	Sandkörner deutlich sicht- und fühlbar, sehr wenig bis mäßig FS	In Fingerrillen haftet FS
		<mark>\$</mark> 12	1-2	1-3	Sandkörner sicht- und fühlbar, sehr wenig FS	In Fingerrillen haftet sehr wenig FS
	Schluff- sande	Su3	0-1	0-2	Sandkörner gut sicht- und fühlbar, deutlich FS führend	In Fingerrillen haftet schwach mehlige FS
		Su4	0-1	0-2	Sandkörner gut sicht- und fühlbar,viel FS	In Fingerrillen haftet stark mehlige FS
ehme	Sand- Iehme	Slu	1-2	3	Sandkörner deutlich sicht- und fühlbar,viel FS	FS ist deutlich mehlig
		SI4	2	3	Sandkörner gut sicht- und fühlbar, mäßig bis viel FS	Schwach glänzende Reibflä che, walnussgroße Kugel formbar
		\$ 1 3	ε	ε	Sandkörner deutlich sicht- und fühlbar, mä- ßig FS führend	Sehr klebrige FS ("Honig- sand")
	Normal- lehme	221	3	3	Sandkörner deutlich sicht- und fühlbar, viel FS	Sehr schwach mehlige FS
		ខោ	3	3	Sandkörner deutlich sicht- und fühlbar, viel FS	Glänzende Reibfläche, sehr deutlich körnig
		4 کا	3	e.	Sandkörner deutlich sicht- und fühlbar, mä- ßig FS führend	Schwach glänzende Reibflä che, sehr deutlich körnig
		L12	4	4	Sandkörner gut sicht- und fühlbar, sehr viel FS	Schwach raue, schwach glänzende Reibfläche
	Ton- lehme	되	4-5	4-5	Sandkörner gut sicht- und fühlbar. reich an FS	Sehr stark glänzende Reib- fläche. körnig

eben stark. Der Tongehalt kann bei ersteren überschäftzt und Farbe Munsell value Sand Lehmiger Sand, Alle übrigen sandiger Lehm, eben 2000 ersterkteten in der on and 2000 ersterkteten ersterkteten in der on and 2000 ersterkteten ersterkteteen ersterkteten ersterkteteen erster	n sandfraktion als Feinsande (ffs: viel 0,06 - 0,2 mm 20),	sande (gs. viel 0,6 - 2 mm Ø) angesprochen. Hellgrau 7 # hord-mischt (-2) advochen = 0 ch = Hellgrau 65			shalten an organischer Substanz schwierig; die organische 5.0	er vor allem hei Sanden - ie nach Himisseehalt - 1-2 Grau 5 < 0.3 < 0.4 0.3-0.6		z.v-a.v a.v-z.v c.+ unrkeigrau c.+	Dunkelgrau 4 0.6-10 09-15	u,e-c,i 2-i c,i-e,u c.e usargrau Schwarzgrau c.e usargrau	Schwarzgrau 3 1,5-3,0 2-4 3-5	jerundete oder scharfkantige Partikel mit Korndurchmessern 5-000 2.5 2.5 3-5 5-000 2-000 2-000 2-000 2-000 2-00	Diese Partikel geben Hinweisauf die Sedimentations- und Schwarz 2 >6	uush dia Dateonenshia dae Ceshandaile anaanneshan waxdan	auch aire scuog aphre aco an anaicsphorach. A chaostea i chaobhaineadh a chao chao sha an a' si a dan Rhimnisceabalt wird wie folde eineach ift-	Masse-% Bezeichnung Kurzteichen	0 humusfrei ho	4 self self schwach humos h1	Interior Cada 1 kiz A administration ki		2 - 63 mm 2 - 63 mm 2	1 enucie (er) 1 A his c8 stark humos ha	‴ 2 [8 bis <15 sehr stark humos 5	" 3 15 bis <30 extrem humos anmonia h6	// 4 530 organisch, Torf h7	z D5	" X, G, Gr	40 Longerter	Die Lagerungsdichte (ds,) beschreibt die Masse trockenen Sediments pro Volumeneinheit, die neben der	Feuchte und Körnung den Eindringwiderstand beim Bohrvorgang bestimmt. Aufgrund von Se-	dimentstauchungen heim Bohren ist die Lagerungschichte im Bohren nur groß abzüschäften nach: gering (Ξ	Dauer des Authorausens nach Behandlung mit Salzsäure (HC) unterleiter unternormenningen ohne onen obnichter in den nach von eine sonnen nie geo oberonnen neue ge		11. Konzentrationen	Die Anreicherung von Ton, Sekundärzarbonat oder Eisen- und Manganhydroxiden deutet auf Bodenbildung	und/oder Anreicherung aus dem Grundwasser oder lateral ziehendem Hanewasser hin Das Auffreten	calibratics contractioner wird notiert	Sent carbonatarm C1		• Sekundárcarbonat: nach Art (weiche Konkretionen, harte Konkretionen, pulverförmig, Pseudomy-	(Habig) carbonations contraction Monetal and Monetal Monetal Monetal Contraction Monetal Contraction Monetal Contraction of Monetal Contraction of Monetal Contraction of C	carbonatreich c4 c2	Gipskristalle ja oder nein Gipskristalle ja oder nein	Ee-und Mn-hvdroxider nach Härte (weich hart) Größe (naximale Durchmesser in mm) und Art der	Anreicherung (Konkretionen, Bänder, Adern, Krusten)		nn grob aus der an einer feuchten Probe bestimmten	s die Kömung berücksichtigt werden muss.	In dieser Spalte sollen alle Besonderheiten vermerkt werden. Dies sind z.B. Auftreten von Wurzein,	Verschlanning von Sadimant Karnvarliste atr. Außerdem Renenning des Sadimenthuis						9
	n der dominiere	0,2 - 0,6 mm Ø) bzw.	nen durcn nachgeben Ander Led – Anterbeiten	110 00C1 L24 - SLOIN SOL	Bodenart ist bei hohere	iokeit und Enrmharkeit	ISACIL UTUAL OF THE OWNER	ckstufen.				ich Kies oder Gruskörr	m) im Bohrkern befin	unden Ealle mödlich e	gungen. Fans mognen, s freten ven Venbretion	nen vermerkt werden.		des Skelettanteils	to be a second s	erunaet, runa,	2 - 63	ehr schwach kie	chwach	hittel		ehr stark	kelettboden			halt		t kann grob nach Stärke rden (Vorsicht! Verursac	les Carbonatgehalts	ı	Carbonate	Soliogino,		<,U> (Tednor	0.5 - 2			10 - 25	altand > 20			e Substanz	ganischen Substanz (Humu	hätzt werden, wobei alle								

Abb. 13 – Anleitung zur makroskopischen Beschreibung von Bohrkernen im Gelände

	Tiefe	Boden-		Unter-				Karbonat-	Org.	
Kern	von (cm)	bis (cm) art	Farbe	grenze	Fleckung, Bänderung	Feuchte	Grobanteil	anteil	Substanz	Bemerkungen
LSL1	0	13 Tt	5Y 3/1	A	V, MG	ш	0	c1/c2	h3	
										18-23: Grüne Flecken GLEY 1 4/56
										23-30: Gelbe Flecken 2,5Y 4/3
										39-42: Weiße Gipsflecken
										42-61: Gelbe Flecken 2,5Y 4/3
										25cm Organic
LSL1	13	61 Tt	5Y 5/1		W, F	Ŀ	0	0	택	49cm Schalenreste
										Gelbgrüne Flecken (5Y 5/6)
LSL2	64	93 Tt	5Y 5/1	De	W, F	ц	0	0	h1	76: Gips, wenige Schalenfragmente
LSL2	93	95 Tt	2,5Y 6/3		W, F	L	0	C	hı	Heller Ton
LSL1	100	130 Tt	57 4/1	Di	S, F	ш	0	0	h2	Ab 120cm wenige kleine Gipsstücke
										138-151: kleine grün/gelbe Flecken
LSL1	130	149 Tt	5Y 5/2	De	V, G	F	0	C	h1	und weiße Gipsflecken
LSL1	149	152 Tt	5Y 3/2			Ŀ	0	<u></u>	Бц	Weiße Gipsflecken
					sv, G					
			2,5Y 3/1		Dunkle Flecken, helle					Bioturbation
LSL2	152	165 Tt	2,5/1	Di	Matrix	ш	0	0	h3	Gipskristalle
					SV, G					Immer weniger Flecken
LSL2	165	198 Tt	2,5Y 4/1		W, MG	ш	0	0	h2	Gipskristalle
LSL1	200	220 Tt	5Y 4/1	Di	SV, G	F	0	C2	h2	Überall Schalenfragmente
LSL1	220	250 Tt	5 ⁷ 5/2		SV, MG	L	0	0	hı	Weniger Schalenfragmente
					۷, 6					260: Schalenfragmente
LSL2	250	277 Tt	2,5Y 6/2	Di	immer weniger	F	1, gr	C	h1	Bioturbation, schwarze Flecken, grüne Flecken
LSL2	277	300 Tt	2,5Y 6/2	Di	S, F	L	0	C	hı	wenige/keine auffallende Flecken
LSL1	300	350 Tt	5 ⁷ 5/1		SV, F	Ŀ	0	0	택	Andere sehr helle Flecken
										Schöne grüne Flekcen (GLEY 17/56)
										Hellere graue Flecken
LSL2	350	399 Tt	5Y 4/1		SV, MG	ц	0	C2	h1	359-389: Schalenreste
										4o2-4o8: Gelbe Flecken
			5 ⁷ 6/2							413-453: Grüne Flecken GLEY 1 4/106Y
LSL1	402	454 Tt	5Y 5/1		SV, F	Ľ	0	0	h2	433-438: Wenige Schalenfragmente
			5Y 6/6							
LSL1	500	518 Tt	Gelbe Flecken	A	W, F	Ľ	0	0	택	Wenige Schalenfragmente

Tab. 1 - Auswertung der Stratigraphie

					W, F					
			GLEY 4/56		Ab 560 minimal					Grüne Flecken, nach unten mehr
LSL1	518	578 Tt	Grüne Flecken		sichtbare Lamination	ш	J	0	h2	558-578: Viele grüne Flecken
										Bioturbation
										Sehr viele Flecken,
LSL1	700	729 Tt	GLEY 5/10Y	De	SV, G	ц)	03	h1	schwierig zu sehen was die originale Farbe ist
LSL1	729	798 Tt	2,5Y 4/1		W, F	ш	3, gr	C	h2	
			57 4/1							
LSL1	800	833 Tt	5Y 5/2	De	W, G	ц	`	0	h2	von duklem Ton in helleren Ton
										Ton mit gröberen Körnern
LSL1	833	863 Tt	5Y 4/1		K	F	3, gr	C	hz	vor allem 833-845
LSL1	006	971 Tt	5Y 4/1	S	S, G	L)	0 C2	h2	Langweiliger Ton
LSL1	971	975 Tt	5Y 5/1	De	K	L)	00	hı	kleiner Interfall mit hellerem Ton
LSL1	975	1000 Tt	5Y 4/1		W, G	L)	03	h2	
LSL1	1000	1033 Tt	5Y 3/1	De	۷, G	L		0	h2	
										Schalenfragmente
LSL1	1033	1054 Tt	5Y 4/1	De	W, F	ц	2, gr	C	h2	Schwarze, pure Tonflecken (klein)
										Schalenfragmente
LSL1	1054	1083 Tt	5Y 2,5/1	S	SV, G	Ч	2, gr	S	h3	Schwarze, pure Tonflecken (groß)
LSL1	1083	1100 Tt	5Y 3/1		W, F	ш	3, gr	C	h3	Viele Schalenfragmente
					bis 1130 K					Viele Schalenfragmente
LSL1	1100	1162 Tt	5Y 3/1	Di	dann V, G	ц	2, gr	c	h3	Flecken ab 1130 sind die nächste Schicht
					bis 1168 V, G					
LSL1	1162	1170 Tt	GLEY 1 6/56Y		dann K	ч	0	0	hı	Komischer grüner Ton, am Ende mehr beige

c:\GeotekData\Lmedina\Co1313	-2-I 0-102cm setu	ıp	
General Core Parameters			
Core ID: Co1313-2-I 0-10	D2cm	Comments:	
Nominal section length (cm):	105.0	Core Co1313-2-I 0-	102cm logged at
Section Position Warning	j Pause	11:04:53 on 10-27-	2014
Log Initial Calibration Pie	ce		-
Section No. 1		E	st. time = 63 mins
Sampling interval (cm):	1.0		
Core Depth (cm)).0 Tie Poi	ints Enable All Sensor	s Disable All Sensors
Boat 🗌 Section Length: 🕻).0		
Variable Sampling	Setup 🗌 🗖 Auto	omatic 🗌 🗖 Ad	dd Pauses Setup
Core Thickness	Gan	nma Attenuation	⊙ On ⊖ Off
(• (Inclume (secs): 10	_
P-Wave		10-3. [1	
Save wave form		ctrical Resistivity	1 0 0n 0 0ff
Temperature		zara bafara aara (am)	. 10.0
			. 110.0
- Magnetic Susceptibility (Se	nsor 1 point) —		● On ○ Off
Compliant time (sees): 10		Zeroing Interval: 1	Units
		o derore core(cm): 11	.u ● SI
Sample Cycles: 1			C cgs
Area Camera	Spectrop	photometer	G 0 C 0"
Show Camera(s)	Apertur		• Un () Uff
	© SAV	(8mm) Reflectance Sp (3mm) Munsell	Show Setup
Advanced S	ave and Quit	<u>C</u> ancel	<u>0</u> K

Abb. 14 - Einstellung bei der Messung der magnetischen Suszeptibilität

Ta	b. 2 - Auswertung d	ler magnetische	en Suszeptibil	ität (MagSus)
	<u> </u>	J		· ,

Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus
LSL4-2	0.01	2.5	LSL4-2	2.00	7.5	LSL1-2	4.07	6.4	LSL4-2	7.76	A.A.	LSL4-2	10.12	2.7
I SL tea	0.02	22	I SLava	2.4	73	I SL 4+2	4.08	6.4	I SLava	777	5.2	1514-2	10.14	2.8
L SL ava	0,01	3/-	L SL ava	-,-	6.8	L SL era	4,000	-,-	L SL ave		5/-	L SL de S		3,0
LOL1-2	0,03	4,2	LOLA-2	2,11	0,0	LOL1-2	4,09	7	LOL1-2	7,70	4	LOL1-2	10,15	4/2
LOL4-2	0,04	5/4	LSL4-2	2,12	5,9	LOL1-2	4,1	7,2	LSL4-2	7,79	3,0	LSL1-2	10,10	3/9
LOL4-2	0,05	5,7	LSL1-2	2,43	0,4	LOL1-2	4,11	7	LSL4-2	7,0	3/9	LSL1-2	10,17	2,7
LSL1-2	0,05	5,8	LSL1-2	2,14	6,8	LSL1-2	4,12	7,8	LSL1-2	7,81	2,7	LSL1-2	10,18	4,1
LSL1-2	0,07	5,6	LSL4-2	2,45	6,2	LSL1-2	4,13	7,4	LSL4-2	7,82	2,6	LSL1-2	10,19	3,7
LSL1-2	0,08	6,2	LSL4-2	2,16	6,3	LSL1-2	4,14	6,7	LSL4-2	7,83	3	LSL1-2	10,2	4
LSL1-2	0,09	6,4	LSL4-2	2,47	5/9	LSL1-2	4,15	6,9	LSLa-2	7,84	2,8	LSL1-2	10,21	3,8
LSL1-2	0,1	6,9	LSL4-2	2,18	8,6	LSL1-2	4,16	7,4	LSL4-2	7,85	3/1	LSL1-2	10,22	3/9
LSL1-2	0,11	7,7	LSLa-2	2,19	8,4	LSL1-2	4,17	7,6	LSL1-2	7,86	3/1	LSL1-2	10,23	4
LSL1-2	0,12	7/5	LSLa-2	2,2	13,5	LSL1-2	4,18	7,8	LSLa-2	7,87	2,8	LSL1-2	10,24	3/3
LSL1-2	0,13	6,6	LSLa-2	2,21	9,6	LSL1-2	4,19	8	LSL4-2	7,88	3	LSL1-2	10,25	3/9
LSLs-2	0,14	6	LSLa-2	2,22	7,8	LSL1-2	4,2	8,9	LSLa-2	7,89	3,4	LSL1-2	10,26	3,6
LSLs-2	0,15	7,6	LSLa-2	2,23	9,2	LSL1-2	4,21	8,3	LSLa-2	7,9	4,2	LSL1-2	10,27	3,5
LSLs-2	0,16	7.7	LSLa-2	2,24	10,3	LSLs-2	4,22	9/5	LSLa-2	7,94	4,3	LSL1-2	10,28	3/5
LSLs-2	0,17	7,6	LSLa-2	2,25	9	LSL1-2	4,23	10	LSLa-2	7,92	2,3	LSL1-2	10,29	3/3
LSL1-2	0,18	8,1	LSLa-2	2,26	8,3	LSL1-2	4,24	9.5	LSL1-2	7,93	2,2	LSL1-2	10,3	3,1
LSLs-2	0,10	7,6	LSLa-2	2,27	7.9	LSLs-2	4,25	8,4	LSLa-2	7,94	2,9	LSL1-2	10,31	2
LSL1-2	0.2	7	LSLa-2	2,28	8.7	LSL1-2	4.26	8.2	LSLa-2	7.95	2.2	LSL1-2	10.22	2.2
1514-2	0.21	67	1514-2	2 20	81	1514-2	4 77	8.8	ISLarz	7.06	3/3	1514-2	10.32	2.5
1514-2	0.22	7.6	ISLarz		8.4	1514-2	4.78	87	ISLarg	7.07	-13	1514-2	10.34	2.5
I SL ava	0,22	84	L SL ava	-13	8.2	I SLord	4.70	7.8	I SL ave	7.08	1.0	L SL de C	40.35	3/2
L SL ava	0,23	8.5	L SLava	-,3-	8.4	L SL ava	479	8	I SL ava	7,90		L SL ava	40.35	3:3
L SL com	0,-4	8.	L SL ave	-13-	5.5	L SL co	773	6.8	L SL	8 //99	5/5	L SL ava	10,30	4/3
L SLA-2	0,25	9,4	LSL4-2	4,33	6,0	LOLD-2	4/32	6,0	LOLA-2		3/9	LSL1-2	10,3/	4/5
LOL1-2	0,20	9/3	LSL1-2	2,34	0,4	LSL1-2	4,32	0,2	LSL1-2	0,01	2,4	LSL1-2	10,30	3,4
LDL1-2	0,27	9,2	LSL1-2	2,35	9,7	LSL1-2	4,33	•	LSL1-2	8,02	2,2	LSL1-2	10,39	3,0
LSL4-2	0,28	8,5	LSL4-2	2,36	5,8	LSL1-2	4/34	5,7	LSL4-2	8,03	2	LSL1-2	10,4	4
LSLs-2	0,29	8,3	LSL4-2	2,37	6,1	LSL1-2	4,35	4,8	LSL4-2	8,04	2,2	LSL1-2	10,41	3,7
LSL1-2	0,3	9,2	LSLa-2	2,38	5/9	LSL1-2	4,36	5/1	LSLa-2	8,05	2,1	LSL1-2	10,42	3,2
LSL1-2	0,31	8,6	LSLa-2	2,39	5,8	LSL1-2	4,37	4,9	LSL4-2	8,06	2	LSL1-2	10,43	3,5
LSLa-2	0,32	7,7	LSLa-2	2,4	6,7	LSL1-2	4,38	4,5	LSLa-2	8,07	2	LSL1-2	10,44	3,6
LSL1-2	0,33	9,6	LSLa-2	2,41	7/5	LSL1-2	4,39	4,4	LSLa-2	8,08	4,7	LSL1-2	10,45	2,3
LSLs-2	9,34	44,5	LSLa-2	2,42	8,8	LSL1-2	4.4	5/5	LSLa-2	8,09	4,3	LSL1-2	10,46	1,9
LSLs-2	9,35	10,4	LSLa-2	2,43	8,9	LSL1-2	4,41	5-4	LSLa-2	8,1	1,8	LSL1-2	10,47	2,4
LSLs-2	0,36	9.5	LSLa-2	2,44	8,2	LSL1-2	4,42	5,6	LSLa-2	8,11	4,3	LSL1-2	10,48	2,8
LSLa-2	0,37	8	LSLa-2	2,45	7,2	LSL1-2	4,43	5,6	LSLa-2	8,12	2	LSL1-2	10,49	3,4
LSLa-2	0,38	6,5	LSLa-2	2,46	6,3	LSL1-2	4.44	5,6	LSLa-2	8,43	2	LSL1-2	10,5	3,3
LSL1-2	0,39	5,1	LSL1-2	2,47	5.7	LSL1-2	4,45	5,2	LSL1-2	8,14	1,8	LSL1-2	10,51	3.4
LSLa-2	0,4	6,1	LSLa-2	2,48	5/3	LSL1-2	4,46	6,9	LSLa-2	8,15	1,6	LSL1-2	10,52	3,3
LSL1-2	0,41	6,8	LSLa-2	2,49	4,1	LSL1-2	4,47	7	LSL1-2	8,16	1,5	LSL1-2	10,53	3,6
LSLa-2	0,42	7	LSLa-2	2.5	3	LSL1-2	4.48	5.8	LSLa-2	8,17	1.5	LSL1-2	10,54	3.7
LSLa-2	0.42	7.0	LSLa-2	2.51	5.4	LSL1-2	4.40	0.5	LSLa-2	8.18	1.8	LSL1-2	10.55	6
1514-2	0.44	7.0	ISLa-2	2.52	6.5	1514-2	4.5	8.0	ISLa-2	8 10	1.5	1514-2	10.55	E 2
1514-2	0.45	60	1514-2	2.62	8.6	1514-2	-	7.6	1514-2	8 -	1.6	1514-2	10.57	- v-
1514-2	0.45	7.6	1514-2	7 54	8.5	1514-2	5 01	77	1514-2	8 24	2,0	1514-2	10.58	50
L SL ero	0,40	// 1	L SL ava	-104	7.5	I SL ava	5,02	7.7	I SLaw	8	-,-	L SL de C	40.50	5/5
1514-2	9/ 9 /	217	L SLow	-,00	//2	I SL con	5,02	//5	LSL	8		LSLa-2	10,59	2
LOL1-2	0,40	9,0	LOLA-2	2,50	7,4	LOL1-2	5,03	7/9	LOL1-2	0,23	4/3	LOL1-2	10,0	4.7
1.51.5-2	9,49	//9	151-1-2	-157	6.	151	5,04	//5	101-12	0,24	413	151-1	10,01	4/9
1.514-2	0,5		1514-2	2,50	9/3 6 -	1.514-2	5,95	0,2	1514-2	0,25	2,2	1511-2	10,02	4,0
LDL1-2	0,51	9,3	LDL1-2	2,59	0,5	LDL1-2	5,00	ø	LSL1-2	0,20	2,2	LDL1-2	10,03	4,0
LSL1-2	0,52	7,8	L5L1-2	2,6	0,2	LSL1-2	5,07	9,1	LSL1-2	8,27	2,4	LSL1-2	10,64	5,7
LSL1-2	9,53	0,1	LSL1-2	2,61	8,5	LSL1-2	5,08	9/3	LSL1-2	8,28	4,6	LSL1-2	10,65	4,1
LSL1-2	9,54	8,8	LSLa-2	2,62	8	LSL1-2	5,09	8,8	LSL1-2	8,29	2,3	LSL1-2	10,66	3,8
LSL1-2	9,55	9	LSLa-2	2,63	7,4	LSL1-2	5,1	9/3	LSL4-2	8,3	2,3	LSL1-2	10,67	3/9
LSL1-2	0,56	8,7	LSLa-2	2,64	8	LSL1-2	5,11	8,1	LSLa-2	8,31	2,6	LSL1-2	10,68	4,1
LSL1-2	9,57	8,9	LSL1-2	2,65	6,5	LSL1-2	5,12	9	LSL1-2	8,32	3/1	LSL1-2	10,69	3,6
LSL1-2	0,58	9,6	LSLa-2	2,66	6,6	LSL1-2	5,43	8,9	LSLa-2	8,33	3,6	LSL1-2	10,7	4/3
LSL1-2	9,59	9	LSLa-2	2,67	7/5	LSL1-2	5,14	9	LSL1-2	8,34	3,6	LSL1-2	10,71	4,6
LSL1-2	0,6	7/9	LSL1-2	2,68	7,9	LSL1-2	5,15	8,7	LSL1-2	8,35	3,8	LSL1-2	10,72	3/9
LSL1-2	0,61	6,1	LSL1-2	2,69	8,5	LSL1-2	5,16	8,1	LSLa-2	8,36	3,7	LSL1-2	10,73	4
LSL1-2	0,62	5,6	LSL1-2	2,7	8,8	LSL1-2	5,47	9,1	LSLa-2	8,37	4,9	LSL1-2	10,74	4,1
LSL1-2	0,63	6,3	LSL1-2	2,71	8,6	LSL1-2	5,18	9,2	LSL1-2	8,38	5/4	LSL1-2	10,75	4/3
LSL1-2	0,64	4	LSL1-2	2,72	9	LSL1-2	5,19	7,9	LSLa-2	8,39	4,8	LSL1-2	10,76	3/5
LSL1-2	0,65	6,2	LSL1-2	2,73	8,2	LSL1-2	5,2	10,1	LSLa-2	8,4	2,9	LSL1-2	10,77	4,3
LSL1-2	0,66	5/3	LSL1-2	2,74	8,7	LSL1-2	5,21	9,9	LSLa-2	8,41	4.3	LSL1-2	10,78	4,6
LSL1-2	0,67	6,9	LSL1-2	2,75	8,8	LSL1-2	5,22	8,5	LSLa-2	8,42	4,2	LSL1-2	10,79	5/7
LSL1-2	0,68	7,1	LSL1-2	2,76	9	LSL1-2	5,22	9,2	LSLa-2	8,42	5.3	LSL1-2	10,8	6,4
LSL1-2	0.60	7.4	LSL1-2	2.77	0.2	LSL1-2	5.24	8.0	LSLa-2	8.44	5.2	LSL1-2	10.81	5.5
LSL1-2	0.7	7.9	LSL4-2	2.78	0.2	LSL1-2	5,25	8.5	LSL4-2	8.45	4.9	LSL1-2	10.82	6.9
LSL1-2	0,71	7.9	LSL1-2	2,79	9.5	LSL1-2	5,26	8,5	LSL1-2	8,46	4.9	LSL1-2	10,83	4.5

Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus
LSLs-2	0,72	7,8	LSL1-2	2,8	8,2	LSL1-2	5,27	9.3	LSLa-2	8,47	4,8	LSL1-2	10,84	2,4
LSLs-2	0,73	8,1	LSL1-2	2,81	7.3	LSLs-2	5,28	9.4	LSLa-2	8,48	4.5	LSL1-2	10,85	2,4
LSL1-2	0,74	8,5	LSL1-2	2,82	7.3	LSL1-2	5,20	8,2	LSLa-2	8,49	4.1	LSL1-2	10,86	2,6
LSLa-2	0.75	9,8	LSL1-2	2,83	8,1	LSL1-2	52	8.7	LSLa-2	8,5	4.2	LSL1-2	10,87	2.2
LSL1-2	0,76	8,9	LSL1-2	2,84	8,7	LSLs-2	5,31	8,5	LSLa-2	8,51	4.4	LSL1-2	10,88	2,5
LSL1-2	9,77	9/3	LSL1-2	2,85	7/2	LSL1-2	5,32	7,8	LSLa-2	8,52	3,6	LSL1-2	10,89	3
LSL1-2	0,78	10	LSL1-2	2,86	8,5	LSL1-2	5,33	9.7	LSLa-2	8,53	3-4	LSL1-2	10,9	5,1
LSL1-2	0,79	8,5	LSL1-2	2,87	10,1	LSL1-2	5-34	9,9	LSLa-2	8,54	5	LSL1-2	10,91	4,2
LSL1-2	0,8	8,2	LSL1-2	2,88	8,3	LSL1-2	5(35	7,8	LSL1-2	8,55	3	LSL1-2	10,92	3
LSL1-2	0,81	6,5	LSL1-2	2,89	8	LSL1-2	5,36	8,2	LSLa-2	8,56	3/9	LSL1-2	10,93	2,8
LSL1-2	0,82	5/5	LSL1-2	2,9	10,1	LSL1-2	5-37	10	LSLa-2	8,57	4,5	LSL1-2	10,94	3,2
LSL1-2	0,83	6,7	LSL1-2	2,91	8,5	LSL1-2	5,38	11	LSLa-2	8,58	3/9	LSL1-2	10,95	3,6
LSL1-2	0,84	6,6	LSL1-2	2,92	7/9	LSL1-2	5,39	8,5	LSLa-2	8,59	2,3	LSL1-2	10,96	4
LSL1-2	0,85	5/3	LSL1-2	2,93	8	LSL1-2	54	9/4	LSL1-2	8,6	1,8	LSL1-2	10,97	2,8
LSL1-2	0,86	47	LSL1-2	2,94	8,7	LSL1-2	5-44	44	LSL4-2	8,61	2	LSL1-2	10,98	2,8
LSL1-2	0,87	4,6	LSL1-2	2,95	10,1	LSL1-2	5.42	11,1	LSL1-2	8,62	1,6	LSL1-2	10,99	1,8
LSL1-2	0,88	5/9	LSL1-2	2,96	9,8	LSL1-2	5-43	10,1	LSLa-2	8,63	0,8	LSL1-2	11,01	3,4
LSL1-2	0,89	6,5	LSL1-2	2,97	8,7	LSL1-2	5.44	44,2	LSL1-2	9,01	9,7	LSL1-2	11,02	4/3
LSL1-2	0,9	7/2	LSL1-2	2,98	8,8	LSL1-2	5-45	9/5	LSL1-2	9,02	2	LSL1-2	11,03	4,3
LSL1-2	0,91	8	LSL1-2	2,99	8,8	LSL1-2	5,46	9,2	LSL1-2	9,03	2,4	LSL1-2	11,04	4,3
LSL1-2	0,92	8,3	LSL1-2	3	5(4	LSL1-2	5-47	8,6	LSL1-2	9,04	2,0	LSL1-2	11,05	4,2
L5L4-2	1,01	4,1	LSL1-2	3,01	5/5	LSL4-2	5,48	10,1	LSL4-2	9,05	2,9	LSL1-2	11,00	4,5
LSL1-2	1,02	4,0	LSL1-2	3,02	5,3	LSL1-2	5,49	0,9	LSL1-2	9,00	2,4	LSL1-2	11,07	3,9
LSL1-2	1,03	4,0	LSL1-2	3,03	5,0	LSL1-2	5,5	10,1	LSL1-2	9,07	2,0	LSL1-2	11,00	4,5
LSLa-2	1,04	6.8	LSL4-2	3,04	5,0	LSL3-2	5,52	9,0	LSL4-2	9,00	2,0	LSL1-2	11,09	4,2
L SLava	4,05	0,0	L SL ava	3,05	6.2	L SL ava	5,54	0,7	L SL ava	9,09	2,5	L SL 4-2	****	-
I SLava	1.07	5.5	I SLava	3,00	c,2	I SL 1-2	5/55	88	I SLava	9/4		1514-2	44.47	4/9
LSL1-2	1.08	7.7	LSL1-2	3/~/	6	LSL1-2	5,54	0,0	LSL1-2	0.12	-//	1514-2	11.12	7
1514-2	1.00	7.3	ISL1-2	3,00	61	1514-2	5×55 6 66	9/- 8 c	ISL1-2	0.12	2.6	1514-2	44.44	3,0
LSL1-2	1.1	8.4	LSL1-2	2.4	6.1	LSL1-2	5,57	8	LSL1-2	0.14	2.1	LSL1-2	11.15	3/9
LSL4-2	4.44	8.1	LSL1-2	2.11	6.5	LSL1-2	5.68	9.4	LSL1-2	0.15	2.5	LSL1-2	11.16	5.2
LSL1-2	1.12	7.9	LSL1-2	2.12	6.7	LSL1-2	5,50	8	LSLa-2	0.16	2	LSL1-2	11.17	5
LSLa-2	1,12	6,6	LSL1-2	2,12	6.7	LSL1-2	5.6	7	LSLa-2	9,17	1.6	LSL1-2	11,18	5.4
LSLs-2	1,14	6,7	LSL1-2	2,14	6,4	LSLs-2	5,61	9.5	LSLa-2	9,18	1,6	LSL1-2	11,10	5.1
LSL1-2	1,15	6,3	LSL1-2	3,15	6,4	LSL1-2	5,62	7,8	LSLa-2	9,19	2,4	LSL1-2	11,2	5,4
LSL1-2	1,16	6,3	LSL1-2	3,16	6,2	LSL1-2	5,63	6,4	LSLa-2	9,2	2,4	LSL1-2	11,21	5,4
LSL1-2	1,17	6,4	LSL1-2	3,47	5,7	LSL1-2	5,64	6,2	LSLa-2	9,21	2,3	LSL1-2	11,22	5/1
LSL1-2	1,18	6,3	LSL1-2	3,18	5,5	LSL1-2	5,65	6,4	LSL1-2	9,22	2,4	LSL1-2	11,23	5,8
LSL1-2	1,19	8,5	LSL1-2	3,19	5(5	LSL1-2	5,66	7,6	LSLa-2	9,23	4,9	LSL1-2	11,24	5,6
LSL1-2	1,2	8,9	LSL1-2	3,2	5,6	LSL1-2	5,67	8,4	LSLa-2	9,24	2	LSL1-2	11,25	5-5
LSL1-2	1,21	8,4	LSL1-2	3,21	5(5	LSL1-2	5,68	8,2	LSLa-2	9,25	2,7	LSL1-2	11,26	5/3
LSL1-2	1,22	9,6	LSL1-2	3,22	4,9	LSL1-2	5,69	7,9	LSL1-2	9,26	2,2	LSL1-2	11,27	5
LSL1-2	1,23	8,7	LSL1-2	3,23	5(4	LSL1-2	5.7	7,4	LSLa-2	9,27	2,6	LSL1-2	11,28	5/2
LSL1-2	1,24	9,4	LSL1-2	3,24	5/9	LSL1-2	5,71	7/3	LSL4-2	9,28	2,2	LSL1-2	11,29	5/2
LSL1-2	1,25	8,5	LSL1-2	3,25	5,8	LSL1-2	5,72	6	LSL1-2	9,29	2,7	LSL1-2	11,3	5-4
LSL1-2	1,26	9/3	LSL1-2	3,26	5/2	LSL1-2	5,73	6,2	LSL1-2	9,3	4,5	LSL1-2	11,31	4,7
LSL1-2	1,27	9/3	LSL1-2	3,27	4,9	LSL1-2	5,74	7	LSL4-2	9,31	2,4	LSL1-2	11,32	5,2
LDL1-2	1,20	9,4	LSL1-2	3,20	4/3	LSL1-2	5,75	5,2	LSL1-2	9,32	2,9	LSL1-2	11,33	4,0
1514-2	1,29	9,7	1514-2	3,29	4,7	LSL1-2	5,70	4,3	LSL1-2	9,33	2,0	LSL1-2	11,34	4,7
LSL 12	-15 1.74	9	L SLave	5/5	4.9	LSLav2	5v// c.=R		LSLard	9/34	2,0	151.00	44.25	ov² ∧ 6
LSLa-2	2,32	9,2	LSL4-2	3/32	4/3	LSL4-2	5,70	4/3	LSL4-2	9,35	2,0	LSL4-2	11,30	4,0
LSL	1.32	10.1	LSLanz	3/34	4.2	LSL	7.02	6.0	LSI 4-2	9.30	-12	LSI 4-2	11.28	57
LSL1-2	1.24	10.1	LSL1-2	2.24	4.0	LSL1-2	7.02	6.7	LSL1-2	0.28	2.7	LSL1-2	11.20	5.7
LSL1-2	1,25	10	LSL1-2	2,25	4.4	LSL1-2	7.04	7.4	LSLa-2	9,39	3	LSL1-2	11,4	5,2
LSLs-2	1,26	9,6	LSL1-2	2,26	5.7	LSLs-2	7,95	6,5	LSLa-2	9,4	2,9	LSL1-2	11,41	5.5
LSLs-2	4,37	8,7	LSL1-2	3,37	6,2	LSL1-2	7,06	6	LSLa-2	9,41	2,9	LSL1-2	11,42	5/3
LSL1-2	1,38	9,1	LSL1-2	3,38	6,7	LSL1-2	7,97	6,2	LSLa-2	9,42	4,7	LSL1-2	11,43	5,1
LSL1-2	4,39	9,9	LSL1-2	3,39	7	LSL1-2	7,08	6	LSL1-2	9,43	2,9	LSL1-2	11,44	5,7
LSL1-2	1,4	9,6	LSL1-2	3,4	6,6	LSL1-2	7,09	5/2	LSLa-2	9,44	3/3	LSL1-2	11,45	5,6
LSL1-2	1,41	11,1	LSL1-2	3,41	8,4	LSL1-2	7,1	6,4	LSL1-2	9,45	3,2	LSL1-2	11,46	5,6
LSL1-2	1,42	11,7	LSL1-2	3,42	8,6	LSL1-2	7,11	6,3	LSL1-2	9,46	3/2	LSL1-2	11,47	5/5
LSL1-2	4,43	10,6	LSL1-2	3,43	9/9	LSL1-2	7,12	5/5	LSLa-2	9,47	3,4	LSL1-2	11,48	5,7
LSL1-2	1,44	9,9	LSL1-2	3,44	9,8	LSL1-2	7/43	6,7	LSL4-2	9,48	2,5	LSL1-2	11,49	6,7
LSL1-2	1,45	9,2	LSL1-2	3,45	8,7	LSL1-2	7,14	5/5	LSL1-2	9,49	3/5	LSL1-2	11,5	6
LSL1-2	1,46	9,4	LSL1-2	3,46	9,9	LSL1-2	7,45	6,3	LSLa-2	9,5	2,3	LSL1-2	11,51	5,7
LSLa-2	4,47	9/7	LSL1-2	3,47	8,2	LSL1-2	7,16	7/4	LSL1-2	9,51	2,2	LSL1-2	11,52	6,4
LSL1-2	1,48	10,4	L5L1-2	3,48	0,9	LSL1-2	7,47	5/4	LSL1-2	9,52	2,4	LSL1-2	11,53	0,3
LSL1-2	4,49	9,0	LSL4-2	3,49	5/ 9 A 8	LSL1-2	7,20	//5	LSL1-2	9/53	2,2	1514-2	11.55	6.6
	12			212	71-		11 2	(12		2124	-			-1-

Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus	Kem	Tiefe	MagSus
LSL1-2	1.51	0.4	LSL1-2	2.51	2.2	LSL1-2	7.2	6.8	LSL1-2	0.55	2.4	LSL1-2	11.56	7.6
LSL1-2	1.52	0.0	LSL1-2	2.62	5.4	LSL4-2	7.24	6.0	LSL1-2	0.55	2.2	LSL1-2	44.67	7.2
1514-2	4.60	515	I SLara	3/3-	54	I SLava	7.22	7.2	I SLava	9,5*	2.2	1514-2	44.68	67
I SLAND	-105	9,0	LSL 1-2	3/33	6	I SLava	7.22	68	I Share	9:5/	-13	I SL 4-2	44.50	~// 66
L SL era	-124	3,0	LSL	3/34	5.	L SL ave	//-3	0,0	LSL	9,50	-,-	LSL 44		6.8
L SL ava	-100	//°	LSL 4-2	3/00	6.7	L SL ava	//-4	9,0	LSL av	9,59	4.5	I SL ava	44.64	6.5
L SL sva	1,50	9/5	LSL1-2	3,50	8.	LSL3-2	//-5	9,2	LSL2-2	9,0	1,0	LSL1-2	11,01	0,3 6 -
L SL sva	3,5/	9	LSL1-2	3/5/	0,2	LSL3-2	7,20	9/4	LSL1-2	9,01	1,0	LSL1-2	11,02	0,3
L SL 4-2	1,50	9,0 8.5	LSL1-2	3,50	7/4	LSLar2	7,27	7	LSL2*2	9,02	2,7	LSL1-2	11,03	5/9
L SL ava		- 8	LSL4-2	3/59	// 1	L SLava	7,20	0,4 5.0	L SLava	9,93	-19	LSL 4-2	44.65	2
L SL ava	4.64	7,0	LSL4-2	3,0	9/5 7.4	L SL ava	//-9	7.6	LSL ava	9,04	3	LSL 4-2	44,65	4/9 c.6
L SL ava	4,01	//9	LSL4-2	3,01	// ²	LSL4-2	//3	//0	LSL 4-2	9,05	3	LSL1-2	11,00	5,0
L SL sva	1,02	30,2	LSL1-2	3,02	8.8	LSL2-2	//34	//2 6 -	LSL2*2	9,00		LSL1-2	11,07	5,0
L SL sva	1,03	6,4	LSL1-2	3,03	0,0	LSL3-2	//34	0,7	LSL2-2	9,07	45	LSL1-2	11,00	0,2
LSL1-2	1,04	0,5	LSL1-2	3,04	9,2	LSL1-2	7/33	7	LSL1-2	9,00	2,7	LSL1-2	11,09	5/9
1.51	-,	5/9	L S L L A	3/*5		151	//34	714	151	9,09			//	24/
LOL1-2	1,00	0,0	LSL1-2	3,00	11,7	LSL1-2	7,35	7	LSL1-2	9,7	2,0			
LOL1-2	1,07	7,0	LSL1-2	3,07	11,0	LSL1-2	7,30	7.7	LSL1-2	9,71	3/4			
LOL1-2	1,00	9,5	LSL1-2	3,00	11,1	LDL1-2	7,37	9,5	LSL1-2	9,72	2,9			
LSL1-2	1,69	9,6	LSL1-2	3,69	10,4	LSL1-2	7,38	5,7	LSL1-2	9,73	3,2			
LSL1-2	4,7	10,0	LSL1-2	3,7	10,8	LSL1-2	7,39	5,7	LSL1-2	9,74	3/9			
LSL1-2	4,74	10,5	LSL1-2	3,71	11	LSL1-2	7/4	5-4	LSL1-2	9,75	4,9			
LSL1-2	1,72	9,9	LSL1-2	3,72	10,9	LSLa-2	7,41	5-4	LSL1-2	9,76	4,6			
LSL1-2	1,73	10,7	LSL1-2	3,73	10,9	LSL1-2	7,42	3/9	LSL1-2	9,77	5/1			
LSL1-2	4,74	10,4	LSL1-2	3,74	11,7	LSL1-2	7,43	4,3	LSL1-2	9,78	47			
LSL1-2	4,75	10,4	LSL1-2	3,75	10,6	LSL1-2	7,44	6,9	LSL1-2	9,79	4,1			
LSL1-2	1,76	9,6	LSL1-2	3,76	11,3	LSL1-2	7,45	6,8	LSL1-2	9,8	3,8			
LSL1-2	±,77	8,9	LSL1-2	3,77	11,3	LSL1-2	7,46	5/9	LSL1-2	9,81	4,5			
LSL1-2	1,78	8,9	LSL1-2	3,78	10	LSL1-2	7,47	6,4	LSL1-2	9,82	4,9			
LSL1-2	4,79	8,3	LSL1-2	3,79	10,6	LSLa-2	7,48	6,6	LSL1-2	9,83	4.4			
LSL1-2	1,8	9,9	LSL1-2	3,8	9,9	LSL1-2	7,49	6	LSL1-2	9,84	3,8			
LSL1-2	1,81	9,7	LSL1-2	3,81	10,9	LSL1-2	7,5	6,4	LSL1-2	9,85	3,7			
LSL1-2	1,82	8,9	LSL1-2	3,82	10,3	LSL1-2	7,51	7	LSL1-2	9,86	4/3			
LSL1-2	4,83	8,8	LSL1-2	3,83	9/9	LSL1-2	7,52	6,1	LSL1-2	9,87	3,6			
LSL1-2	1,84	10,3	LSL1-2	3,84	10,2	LSL1-2	7,53	6,2	LSL1-2	9,88	4,1			
LSL1-2	1,85	8,3	LSL1-2	3,85	10,3	LSL1-2	7,54	6,4	LSL1-2	9,89	4,1			
LSL1-2	1,86	8,5	LSL1-2	3,86	9,8	LSL1-2	7,55	6	LSL1-2	9,9	3,6			
LSL1-2	1,87	6	LSL1-2	3,87	11,4	LSLa-2	7,56	4,2	LSL1-2	9,91	3,6			
LSL1-2	1,88	4,8	LSL1-2	3,88	11,1	LSLa-2	7,57	6	LSL1-2	9,92	3,6			
LSL1-2	1,89	5/4	LSL1-2	3,89	11,8	LSL1-2	7,58	8,3	LSL1-2	9,93	4,3			
LSL1-2	1,9	6	LSL1-2	3/9	10,3	LSL1-2	7,59	7,6	LSL1-2	9,94	3,6			
LSL1-2	1,91	5,6	LSL1-2	3,91	10,9	LSL1-2	7,6	7,3	LSL1-2	9,95	4			
LSL1-2	1,92	5/9	LSL1-2	3,92	10	LSL1-2	7,61	8,1	LSL1-2	9,96	4.7			
LSL1-2	4,93	5,5	LSL1-2	3/93	10	LSL1-2	7,62	7	LSL1-2	9,97	3/9			
LSL1-2	1,94	5/5	LSL1-2	3,94	10,4	LSL1-2	7,63	6,7	LSL1-2	9,98	2,2			
LSL1-2	1,95	5/3	LSL1-2	3/95	9,1	LSL1-2	7,64	5v9	LSL1-2	9,99	2,3			
LSL1-2	1,96	5/3	LSL1-2	3,96	9,2	LSL1-2	7,65	6,5	LSL1-2	10,02	1,3			
LSL1-2	1,97	5,6	LSL1-2	3/97	7,6	LSLa-2	7,66	6,3	LSL1-2	10,03	4,3			
LSL1-2	2	3/9	LSL1-2	3,98	8,9	LSL1-2	7,67	6,1	LSL1-2	10,04	1,1			
LSL1-2	2,01	4,5	LSL1-2	3,99	10,1	LSL1-2	7,68	6,2	LSL1-2	10,05	1,2			
LSL1-2	2,02	4,1	LSL1-2	4	3/9	LSL1-2	7,69	6,2	LSL1-2	10,06	1			
LSL1-2	2,03	4-3	LSL1-2	4,01	5/2	LSL1-2	7,7	6,8	LSL1-2	10,07	0,8			
LSL1-2	2,04	8,3	LSL4-2	4,02	5.7	LSL1-2	7,74	6	LSL1-2	10,08	1			
LSL1-2	2,05	7,8	LSL1-2	4,03	6,3	LSL1-2	7,72	5	LSL1-2	10,09	1,2			
LSL1-2	2,06	7,9	LSL1-2	4,04	5,6	LSL1-2	7,73	4,8	LSL1-2	10,1	1,4			
LSL1-2	2,07	7,4	LSL1-2	4,95	6,7	LSL1-2	7,74	4,8	LSL1-2	10,11	4,7			
LSL1-2	2,08	7	LSL1-2	4,06	6,8	LSL1-2	7,75	5	LSLa-2	10,12	2,3			

File	Tiefe (von)	Tiefe (bis)	Einwaage	C-%	N-%	S-%
LSL 1-2	0	0,02	5,078000069	3,96	0,21	2,427
LSL 1-2	0,06	0,08	5,139999866	4,15	0,19	1,145
LSL 1-2	0,12	0,14	5,065999985	4,31	0,21	0,572
LSL 1-2	0,18	0,2	5,06400013	4,23	0,13	0,512
LSL 1-2	0,24	0,26	4,93599987	3,86	0,02	1,792
LSL 1-2	0,3	0,32	4,933000088	4,45	0,03	0,650
LSL 1-2	0,36	0,38	4,947000027	4,40	0,03	1,210
LSL 1-2	0,42	0,44	4,947000027	3,90	0,03	0,987
LSL 1-2	0,48	0,5	5,052999973	4,74	0,03	0,491
LSL 1-2	0,54	0,56	5,048999786	4,45	0,02	0,371
LSL 1-2	0,6	0,62	4,962999821	4,65	0,02	0,186
LSL 1-2	0,66	0,68	5,031000137	3,50	0,02	2,338
LSL 1-2	0,72	0,74	5,126999855	4,33	0,02	0,282
LSL 1-2	0,78	0,8	4,980999947	4,31	0,03	0,272
LSL 1-2	0,84	0,86	4,947999954	4,66	0,02	0,253
LSL 1-2	0,9	0,92	5,031000137	4,22	0,02	0,259
LSL 1-2	1,02	1,04	5,111000061	3,96	0,02	1,691
LSL 1-2	1,08	1,1	4,902999878	3,80	0,02	1,191
LSL 1-2	1,14	1,16	4,964000225	4,31	0,02	0,962
LSL 1-2	1,2	1,22	4,967999935	3,74	0,03	0,621
LSL 1-2	1,26	1,28	4,914000034	4,39	0,03	0,454
LSL 1-2	1,32	1,34	4,964000225	4,68	0,02	0,478
LSL 1-2	1,38	1,4	4,916999817	4,84	0,03	0,400
LSL 1-2	1,44	1,46	5,107999802	4,25	0,03	0,328
LSL 1-2	1,5	1,52	4,895999908	3,18	0,02	0,456
LSL 1-2	1,56	1,58	5,044000149	3,10	0,02	0,913
LSL 1-2	1,62	1,64	5,025000095	3,34	0,02	0,531
LSL 1-2	1,68	1,7	5,072000027	3,80	0,02	0,902
LSL 1-2	1,74	1,76	5,068999767	3,78	0,02	0,562
LSL 1-2	1,8	1,82	5,043000221	4,24	0,02	0,561
LSL 1-2	1,86	1,88	5,024000168	4,33	0,02	0,431
LSL 1-2	1,92	1,94	4,967000008	3,84	0,03	0,327
LSL 1-2	2,04	2,06	5,117000103	3,93	0,02	0,377
LSL 1-2	2,1	2,12	4,992000103	4,47	0,02	0,218
LSL 1-2	2,16	2,18	4,920000076	4,11	0,02	0,282
LSL 1-2	2,22	2,24	4,968999863	4,85	0,02	0,204
LSL 1-2	2,28	2,3	4,899000168	4,68	0,00	0,236
LSL 1-2	2,34	2,36	4,946000099	4,90	0,02	0,371
LSL 1-2	2,4	2,42	4,918000221	4,53	0,01	0,114
LSL 1-2	2,46	2,48	4,866000175	4,76	0,02	0,084
LSL 1-2	2,52	2,54	4,962999821	4,55	0,02	0,751
LSL 1-2	2,58	2,6	4,934000015	4,91	0,01	0,116
LSL 1-2	2,64	2,66	4,907999992	5,04	0,02	0,102
LSL 1-2	2,7	2,72	4,938000202	4,91	0,02	0,082

Tab. 3 - Auswertung der Gesamtanteile von Kohlenstoff (C), Stickstoff (N) und Schwefel (S)

ХХ

LSL 1-2	2,76	2,78	4,934999943	4,78	0,01	0,073
LSL 1-2	2,82	2,84	4,843999863	5,58	0,02	0,088
LSL 1-2	2,88	2,9	4,861000061	5,19	0,02	0,090
LSL 1-2	2,94	2,96	4,947999954	5,08	0,00	0,090
LSL 1-2	3	3,02	4,999000072	4,82	0,01	0,149
LSL 1-2	3,06	3,08	4,934999943	4,78	0,00	0,143
LSL 1-2	3,12	3,14	5,080999851	4,76	0,00	0,091
LSL 1-2	3,18	3,2	4,938000202	4,61	0,00	0,102
LSL 1-2	3,24	3,26	4,803999901	4,41	0,00	0,109
LSL 1-2	3,3	3,32	5,052999973	4,78	0,00	0,110
LSL 1-2	3,36	3,38	5,028999805	4,71	0,00	0,097
LSL 1-2	3,42	3,44	4,869999886	4,43	0,00	0,098
LSL 1-2	3,48	3,5	5	4,38	0,00	0,085
LSL 1-2	3,54	3,56	4,874000072	4,61	0,00	0,136
LSL 1-2	3,6	3,62	5,039000034	4,45	0,00	0,093
LSL 1-2	3,66	3,68	4,822000027	4,37	0,02	0,052
LSL 1-2	3,72	3,74	4,958000183	4,30	0,02	0,094
LSL 1-2	3,78	3,8	4,861999989	4,37	0,02	0,096
LSL 1-2	3,84	3,86	5,06799984	4,19	0,02	0,099
LSL 1-2	3,9	3,92	4,967999935	4,25	0,02	0,099
LSL 1-2	3,96	3,98	4,863999844	4,95	0,00	0,102
LSL 1-2	4,02	4,04	5,085000038	4,83	0,02	0,155
LSL 1-2	4,08	4,1	4,800000191	4,84	0,00	0,141
LSL 1-2	4,14	4,16	4,980999947	4,76	0,00	0,117
LSL 1-2	4,2	4,22	5,122000217	4,49	0,02	0,100
LSL 1-2	4,26	4,28	4,80700016	4,27	0,02	0,094
LSL 1-2	4,32	4,34	5,178999901	4,29	0,01	0,091
LSL 1-2	4,38	4,4	4,991000175	4,65	0,02	0,093
LSL 1-2	4,44	4,46	4,903999805	4,54	0,02	0,090
LSL 1-2	5,04	5,06	5,104000092	4,70	0,01	0,158
LSL 1-2	5,1	5,12	4,997000217	4,78	0,02	0,128
LSL 1-2	5,16	5,18	5,000999928	4,65	0,02	0,116
LSL 1-2	5,22	5,24	5,106999874	4,68	0,02	0,105
LSL 1-2	5,28	5,3	5,117000103	4,56	0,02	0,102
LSL 1-2	5,34	5,36	5,034999847	4,58	0,01	0,103
LSL 1-2	5,4	5,42	4,922999859	4,27	0,00	0,085
LSL 1-2	5,46	5,48	4,813000202	4,52	0,02	0,085
LSL 1-2	5,52	5,54	4,836999893	4,53	0,01	0,100
LSL 1-2	5,58	5,6	4,931000233	4,58	0,02	0,106
LSL 1-2	5,64	5,66	5,054999828	5,03	0,02	0,100
LSL 1-2	5,7	5,72	5,073999882	4,98	0,00	0,106
LSL 1-2	5,76	5,78	5,089000225	4,95	0,02	0,113
LSL 1-2	7,02	7,04	5,118999958	4,31	0,02	0,152
LSL 1-2	7,08	7,1	4,918000221	4,70	0,02	0,195
LSL 1-2	7,14	7,16	4,861999989	4,86	0,00	0,136
LSL 1-2	7,2	7,22	5,176000118	4,60	0,02	0,138

LSL 1-2	7,26	7,28	5,048999786	4,49	0,01	0,259
LSL 1-2	7,32	7,34	5,03000021	4,69	0,02	0,225
LSL 1-2	7,38	7,4	5,014999866	4,64	0,01	0,241
LSL 1-2	7,44	7,46	5,056000233	4,58	0,02	0,263
LSL 1-2	7,5	7,52	4,856999874	4,56	0,02	0,251
LSL 1-2	7,56	7,58	5,09499979	4,65	0,02	0,210
LSL 1-2	7,62	7,64	4,946000099	4,91	0,02	0,305
LSL 1-2	7,68	7,7	5,162000179	5,00	0,08	0,265
LSL 1-2	7,74	7,76	4,946000099	5,21	0,08	0,371
LSL 1-2	7,8	7,82	4,978000164	4,92	0,01	0,438
LSL 1-2	7,86	7,88	4,914999962	5,10	0,07	0,587
LSL 1-2	7,92	7,94	5,196000099	5,15	0,10	0,762
LSL 1-2	7,98	8	4,900000095	4,69	0,02	0,633
LSL 1-2	8,04	8,06	5,017000198	4,99	0,08	0,604
LSL 1-2	8,1	8,12	5,078000069	4,81	0,08	0,837
LSL 1-2	8,16	8,18	4,940000057	4,91	0,10	0,884
LSL 1-2	8,22	8,24	4,94299984	5,45	0,02	0,779
LSL 1-2	8,28	8,3	5,129000187	5,67	0,11	0,750
LSL 1-2	8,34	8,36	5,125	5,50	0,10	0,735
LSL 1-2	8,4	8,42	4,989999771	5,49	0,08	0,622
LSL 1-2	8,46	8,48	5,06799984	5,17	0,02	0,615
LSL 1-2	8,52	8,54	5,06099987	5,28	0,09	0,861
LSL 1-2	8,58	8,6	5,104000092	5,04	0,08	0,771
LSL 1-2	9	9,02	5,113999844	4,90	0,02	0,735
LSL 1-2	9,06	9,08	5,066999912	4,90	0,09	0,832
LSL 1-2	9,12	9,14	4,987999916	4,71	0,09	0,921
LSL 1-2	9,18	9,2	4,989999771	4,63	0,10	0,892
LSL 1-2	9,24	9,26	4,873000145	4,66	0,10	0,819
LSL 1-2	9,3	9,32	5,065999985	4,48	0,09	0,826
LSL 1-2	9,36	9,38	4,953000069	4,60	0,13	0,842
LSL 1-2	9,42	9,44	5,129000187	4,51	0,13	0,834
LSL 1-2	9,48	9,5	4,81799984	4,76	0,12	0,855
LSL 1-2	9,54	9,56	5,007999897	4,75	0,15	0,737
LSL 1-2	9,6	9,62	4,828000069	4,87	0,14	0,772
LSL 1-2	9,66	9,68	4,973999977	5,03	0,14	0,800
LSL 1-2	9,72	9,74	5,06799984	5,72	0,15	0,658
LSL 1-2	9,78	9,8	4,848999977	6,33	0,18	0,653
LSL 1-2	9,84	9,86	4,927999973	6,14	0,19	0,770
LSL 1-2	9,9	9,92	4,831999779	5,98	0,17	0,718
LSL 1-2	9,96	9,98	5,105000019	6,13	0,17	0,460
LSL 1-2	10,02	10,04	5,120999813	5,25	0,18	0,739
LSL 1-2	10,08	10,1	4,913000107	4,66	0,19	0,857
LSL 1-2	10,14	10,16	4,921000004	4,88	0,16	0,704
LSL 1-2	10,2	10,22	4,919000149	5,22	0,22	0,587
LSL 1-2	10,26	10,28	5,131999969	5,44	0,24	0,633
LSL 1-2	10,32	10,34	4,988999844	5,38	0,20	0,629

LSL 1-2	10,38	10,4	5,190000057	4,95	0,14	0,439
LSL 1-2	10,44	10,46	5,126999855	5,48	0,20	0,489
LSL 1-2	10,5	10,52	5,074999809	5,30	0,15	0,548
LSL 1-2	10,56	10,58	5,111999989	4,98	0,17	0,533
LSL 1-2	10,62	10,64	5,127999783	5,17	0,13	0,471
LSL 1-2	10,68	10,7	5,171000004	5,81	0,23	0,480
LSL 1-2	10,74	10,76	5,117000103	5,87	0,19	0,531
LSL 1-2	10,8	10,82	5,019000053	6,14	0,17	0,372
LSL 1-2	10,86	10,88	5,151000023	5,69	0,20	0,284
LSL 1-2	10,92	10,94	5,159999847	5,52	0,18	0,436
LSL 1-2	10,98	11	5,020999908	5,53	0,16	0,396
LSL 1-2	11,04	11,06	4,931000233	5,26	0,15	0,386
LSL 1-2	11,1	11,12	5,195000172	5,00	0,14	0,402
LSL 1-2	11,16	11,18	5,020999908	5,03	0,17	0,421
LSL 1-2	11,22	11,24	5,084000111	4,43	0,12	0,594
LSL 1-2	11,28	11,3	4,987999916	4,21	0,02	0,519
LSL 1-2	11,34	11,36	4,931000233	4,34	0,02	0,429
LSL 1-2	11,4	11,42	4,980000019	3,93	0,02	0,489
LSL 1-2	11,46	11,48	4,862999916	4,09	0,02	0,245
LSL 1-2	11,52	11,54	5,153999805	4,73	0,02	0,166
LSL 1-2	11,58	11,6	5,171999931	4,43	0,01	0,102