
RESEARCH ARTICLE

Screening archaeological bone for

palaeogenetic and palaeoproteomic studies

Ioannis KontopoulosID
1¤*, Kirsty Penkman2☯, Victoria E. Mullin3,4☯, Laura Winkelbach5‡,

Martina Unterländer5,6,7‡, Amelie Scheu5‡, Susanne KreutzerID
5‡, Henrik B. Hansen8‡,

Ashot Margaryan8‡, Matthew D. Teasdale3,9, Birgit GehlenID
10, Martin Street11,

Niels Lynnerup12, Ioannis Liritzis13,14, Adamantios Sampson15,

Christina Papageorgopoulou6, Morten E. Allentoft8‡, Joachim Burger5, Daniel G. Bradley3,

Matthew J. Collins9,16☯

1 Department of Archaeology, BioArCh, University of York, York, United Kingdom, 2 Department of

Chemistry, BioArCh, University of York, York, United Kingdom, 3 Smurfit Institute of Genetics, Trinity College

Dublin, Dublin, Ireland, 4 Department of Earth Sciences, Natural History Museum, London, United Kingdom,

5 Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-

University Mainz, Mainz, Germany, 6 Laboratory of Physical Anthropology, Department of History and

Ethnology, Democritus University of Thrace, Komotini, Greece, 7 German Federal Criminal Police Office,

Wiesbaden, Germany, 8 Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen,

Denmark, 9 Department of Archaeology, McDonald Institute for Archaeological Research, University of

Cambridge, Cambridge, United Kingdom, 10 Collaborative Research Centre, project D4, Cologne University,

Cologne, Germany, 11 MONREPOS Archaeological Research Centre and Museum for Human Behavioural

Evolution, RGZM Leibniz Research Institute for Archaeology, Neuwied, Germany, 12 Unit of Forensic

Anthropology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark,

13 Laboratory of Archaeometry, Department of Mediterranean Studies, University of the Aegean, Rhodes,

Greece, 14 Center on Yellow River Civilization of Henan Province, Key Research Institute of Yellow River

Civilization and Sustainable Development and Collaborative Innovation, Henan University, Kaifeng, China,

15 Department of Mediterranean Studies, University of the Aegean, Rhodes, Greece, 16 Centre for

Evogenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark

☯ These authors contributed equally to this work.

¤ Current address: Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen,

Denmark

‡ These authors also contributed equally to this work.

* ioanniskontopoulos1@gmail.com

Abstract

The recovery and analysis of ancient DNA and protein from archaeological bone is time-

consuming and expensive to carry out, while it involves the partial or complete destruction of

valuable or rare specimens. The fields of palaeogenetic and palaeoproteomic research

would benefit greatly from techniques that can assess the molecular quality prior to sam-

pling. To be relevant, such screening methods should be effective, minimally-destructive,

and rapid. This study reports results based on spectroscopic (Fourier-transform infrared

spectroscopy in attenuated total reflectance [FTIR-ATR]; n = 266), palaeoproteomic (colla-

gen content; n = 226), and palaeogenetic (endogenous DNA content; n = 88) techniques.

We establish thresholds for three different FTIR indices, a) the infrared splitting factor

[IRSF] that assesses relative changes in bioapatite crystals’ size and homogeneity; b) the

carbonate-to-phosphate [C/P] ratio as a relative measure of carbonate content in bioapatite

crystals; and c) the amide-to-phosphate ratio [Am/P] for assessing the relative organic con-

tent preserved in bone. These thresholds are both extremely reliable and easy to apply for

the successful and rapid distinction between well- and poorly-preserved specimens. This is
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a milestone for choosing appropriate samples prior to genomic and collagen analyses, with

important implications for biomolecular archaeology and palaeontology.

1. Introduction

Ancient DNA (aDNA) extracted from archaeological and palaeontological bone (palaeoge-

netics) can provide insights on a plethora of different topics related to human evolution [1,2]

and past societies (mobility [3,4]; biological sex [5,6]; kinship [7,8]; pathology [9,10]; animal

domestication [11,12]). However, DNA is a relatively unstable biomolecule which undergoes

progressive fragmentation post-mortem [13–18]. DNA degradation is caused by a wide range

of biological, chemical, and environmental factors in the burial environment [16,19,20], and

the post-excavation treatment and storage of archaeological bone may further damage the

DNA [15,21–24].

The preservation of ancient proteins (palaeoproteomics) is of interest to archaeologists,

anthropologists, and archaeological scientists as they can provide valuable information on the

chronological age (14C dating), amino acid racemization [25,26], past dietary habits [27,28],

and animal species identification [29–31]. Although proteins are more stable than DNA, and

can therefore survive much longer (e.g. [32] and references therein), the dominant protein in

bone (collagen) also suffers post-mortem from biological, chemical, and environmental factors

[33–35].

Despite the falling costs in palaeogenetic and palaeoproteomic studies, the establishment of

any reliable screening method is a valuable tool. This is due to the technical difficulties associ-

ated with the recovery and analysis of aDNA and protein from bone, the partial destruction of

valuable or rare specimens, and the still-high sequencing costs.

Previous studies have explored the association of endogenous DNA yields with several

parameters including gross morphology and bone size [36,37], histology [36,38–40], collagen

preservation [20,41,42], or amino acid racemization [43–45]. The efficiency of the macro-

scopic and/or microscopic appearance of bone as tools for screening have been disputed due

to their subjective nature (inter-observer error), and the lack of accuracy and precision which

result in unreliable screening practices. Aspartic acid racemization has been challenged [43]

on the basis that in bone (and open-system) racemization records the proportional loss of

(highly racemized) gelatin, not the state of DNA preservation, while the relationship of colla-

gen content to endogenous DNA yield requires further investigation.

The efficiency of the mid-IR spectra for screening archaeological bone has also been previ-

ously investigated, as it can potentially provide valuable information for predicting the endoge-

nous DNA content. As DNA molecules have been found to be protected from further

degradation by adsorbing onto the bioapatite (BAp) crystal surfaces under favourable environ-

mental conditions [16,18,19,41,46], any structural and compositional changes observed in

BAp crystals using the semi-quantitative infrared splitting factor [IRSF; 47] and carbonate-to-

phosphate ratio [C/P; 48] should be linked to endogenous DNA survival. The IRSF reflects the

relative changes in average BAp crystal size and homogeneity, while the carbonate-to-phos-

phate ratio reflects the relative changes in the carbonate environment of BAp (i.e. carbonate

loss, carbonate uptake via adsorption to crystal surfaces or substitution in the crystal lattice,

and phosphate-carbonate exchange [49]). However, although FTIR spectroscopy is often

proposed as a potential screening tool for endogenous DNA [39,40,45,50] in archaeological

bone due to its minimally-destructive, time- and cost-efficient nature, the prediction of the
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endogenous DNA survival has been deemed extremely difficult and it has never been linked to

the amount of endogenous DNA preserved in bone [39,45].

Efforts have also been made to screen archaeological bone for collagen preservation, with

the use of the whole bone nitrogen [51–53] and carbon content [40] currently being the

most promising predictors of collagen survival, although these are destructive. FTIR spec-

troscopy also has the potential to constitute a reliable screening tool for archaeological bone

collagen preservation. However, post-mortem changes in BAp crystals, which can expose

collagen fibrils and accelerate to some extent collagen degradation (i.e. fragmentation of the

polypeptide chains [35,54–57] reflected in changes in IRSF and C/P), often show no strong

correlation with collagen wt. % [49]. The Am/P ratio (amide-to-phosphate; 1640 cm-1/ 1010

cm-1) has been extensively used for the assessment of the organic content in bone [58,59],

as the amide I peak at c. 1640 cm-1 is considered characteristic of proteins and peptides

[60,61]. Nevertheless, issues related to the presence of overtones due to the chemical treat-

ment of bone, the O-H stretch vibration at 1640–1660 cm-1 related with structural water, or

the presence of humic acids, can often lead to inaccurate reporting of collagen preservation

[59,62].

This study proposes FTIR-ATR (Fourier transform infrared spectroscopy in attenuated

total reflectance) as a reliable, rapid screening tool for endogenous DNA and collagen preser-

vation in archaeological bone. As archaeological specimens are finite and palaeogenetic and

palaeoproteomic research projects have limited financial resources, thresholding specimens

for endogenous DNA and collagen preservation prior to sampling could be advantageous for

specimen and/or methodology choice. Here we follow a different approach as we focus on

identifying samples with> 1% and> 10% endogenous DNA; these are plausible minimum

thresholds for researchers interested in the generation of nuclear ancient genomes via Next

Generation Sequencing technology and employing different levels of analysis. Similarly, two

different collagen yield (wt.%) thresholds have been selected (i.e. 3% [63] and 2% [60]); these

have been widely used for the distinction between well- and poorly-preserved collagen samples

in palaeodietary, radiocarbon, and palaeoproteomic studies and are therefore applied in this

study for collagen screening.

The minimally destructive nature of FTIR-ATR means that it is a breakthrough in choosing

appropriate samples prior to palaeogenetic and palaeoproteomic analyses. This method has

important implications for biomolecular archaeology and palaeontology as it enables the dis-

tinction between well- and poorly-preserved specimens. By linking the % endogenous DNA

and collagen wt. % to defined thresholds for IRSF, C/P and/or Am/P, this standardised

approach is very reliable and easy to apply.

2. Materials and methods

2.1. Materials

Samples came from 20 archaeological sites (see S1 and S2 Tables), of which one was from Ger-

many (c. 10,000 B.C.), one from Jordan (7500–5500 B.C.), six from Greece (8300–800 B.C.),

one from Central Asia (2100–1800 B.C.), nine from Britain (3200 BC-1100 A.D.), one from

Belgium (900–1800 A.D.), and one from Denmark (1650–1850 A.D.). The aim was to study

both human and animal skeletal remains of different chronological ages that originate from

different geographic locations and burial environments. Petrous bones are representative of

the b and/or c areas as presented in Pinhasi et al. [64]. All necessary permits, which complied

with all relevant regulations, were obtained from the authorities, institutions and/or research-

ers mentioned in the acknowledgement section.
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2.2. FTIR-ATR

The preparation and analysis of 266 samples (including 102 petrous bones; S1 Table), was car-

ried out following Kontopoulos et al. [65]. This methodological approach was selected as it sig-

nificantly improves accuracy, precision, reproducibility and comparability of data, as seen in a

subset of fifteen archaeological, one modern bovine and one synthetic hydroxyapatite (HAp)

samples which were run in triplicate in a Bruker Alpha Platinum and a Bruker Vertex 70v in

vacuum using the same parameters (see S3 Table).

Bone samples were ground using an agate pestle and mortar following the mechanical

cleaning of the outer and inner bone surfaces. Pulverization of the samples from British

archaeological sites was carried out using a Retsch oscillating steel ball mill grinder at 20 Hz

for 20–25 seconds x 3–5 times. Samples were run in triplicate and about 2–3 mg of bone pow-

der of 20–50 μm particle size were used for each measurement using a Bruker Alpha Platinum.

The crystal plate and the anvil of the pressure applicator were thoroughly cleaned using isopro-

pyl alcohol after each measurement. The mid-IR spectra were analysed using OPUS 7.5 soft-

ware and FTIR indices were calculated after baseline correction, as reported in Kontopoulos

et al. [65]. The infrared splitting factor (IRSF = 600 cm-1 + 560 cm-1 / 590 cm-1) was assessed

after Weiner and Bar-Yosef [47], the carbonate-to-phosphate ratio (C/P = 1410 cm-1 / 1010

cm-1) was calculated as in Wright and Schwarcz [48], and the amide-to-phosphate ratio (Am/

P = 1640 cm-1 / 1010 cm-1) was assessed according to Trueman et al. [58]. The Am/C1 (1640

cm-1 / 1410 cm-1) and Am/C2 (1640 cm-1 / 872 cm-1) ratios used two different CO3
2¯ bands.

The 872 cm-1 peak height was calculated after baseline correction drawn from c. 830 to c. 890

cm-1.

2.3. Collagen analysis

Collagen was extracted from 226 samples (including 62 petrous bones; see S1 Table) using a

modified Longin [66] method as in Kontopoulos et al. [49]. The exterior surfaces of bone sam-

ples were mechanically cleaned using a scalpel. Bone chunks of 300–500 mg were demineral-

ized in 8 mL 0.6 M HCl at 4˚ C. Samples were agitated twice daily, and acid solution was

changed every two days. When demineralization was completed, the supernatant was drained

off and samples were rinsed three times with distilled water. Gelatinization was carried out by

adding 8 mL pH 3 HCl and samples were placed in hot blocks at 80˚C for 48 h. The superna-

tant liquor which contains the collagen was filtered off by using Eezee filters and was freeze-

dried for 2 days in pre-weighed sterile plastic tubes. Collagen yields (wt.%) were estimated

using the following formula: [bone mass (mg) / collagen mass (mg)] × 100, where bone mass

is the weight of bone chunks after cleaning the exterior surfaces, and collagen mass is the

extracted material that remains following demineralization, gelatinization, and filtering.

2.4. DNA analysis

The endogenous DNA content of 88 samples (including 80 petrous bones; S1 Table), was pro-

vided by three different research groups in Europe. Laboratory work was performed according

to strict aDNA standards in dedicated clean laboratory facilities at Trinity College Dublin

(Daniel Bradley’s group), Johannes Gutenberg-University Mainz (Joachim Burger’s group),

and the University of Copenhagen (Morten Allentoft’s group). The exterior surfaces of bones

were mechanically removed using a drill or by sandblasting, and UV-irradiated prior to

pulverization. DNA extraction, library preparation, sequencing, bioinformatics and DNA

authenticity were conducted as described in Verdugo et al. [12], Hofmanová et al. [3] with

modifications, Botigué et al. [67], and Hansen et al. [68] for Trinity College Dublin,

Johannes Gutenberg-University Mainz and University of Copenhagen, respectively
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(see section 2—S1 Text for laboratory protocols). Endogenous DNA percentages were also

estimated using the same bioinformatics pipeline (see section 2—S1 Text for the pipeline) for

all samples to eliminate the potential effects of the different bioinformatics protocols followed

by the three different labs on the estimated yields.

3. Results and discussion

3.1. Endogenous DNA screening using the IRSF and C/P

Despite the weak correlation (R2 = 0.24) between aDNA and crystallinity (IRSF) and the very

weak relationship (R2 = 0.13) with carbonate content (C/P), likely due to the complex interac-

tions during diagenesis (e.g. local hydrology, pH, temperature), there appear to be thresholds

of both IRSF and C/P that are related to endogenous DNA preservation. This dataset, there-

fore, demonstrates that IRSF and C/P mid-IR indices can be considered reliable predictors of

endogenous DNA preservation.

The categorization of samples into three groups based on their endogenous DNA yields

(i.e. > 10%, 1–10%, and< 1%) allows some very interesting observations to be made. In the

case of well-preserved specimens with endogenous DNA> 10%, c. 90% of the samples

(n = 44) display IRSF values� 3.7, and only c. 10% (n = 6) have 3.7� IRSF� 4.2 (Fig 1; S4

Table). When endogenous DNA yields drop between 1–10%, 71% of bones (n = 10) have an

IRSF� 3.7, whereas 29% (n = 4) have 3.7� IRSF� 4.2 (Fig 1; S4 Table). Bones that yield

endogenous DNA below 1% predominantly display IRSF values over 3.7 (c. 70%; n = 16), with

a small subset (c. 30%; n = 8) characterized by crystallinity below the 3.7 threshold (Fig 1; S4

Table). Overall, c. 70% of all samples with IRSF� 3.7 contain endogenous DNA> 10%, and a

total of c. 90% contain endogenous DNA over 1%. All bones with IRSF > 4.2 yielded endoge-

nous DNA below 1% (Fig 1; S4 Table). Furthermore, these results demonstrate that the effec-

tiveness of the IRSF as a screening is not affected by fluctuations in endogenous DNA

percentages due to differences in bioinformatic pipelines (S4 Table and S1 Fig).

Therefore, IRSF can successfully distinguish bones likely to be suitable for palaeogenetic

analysis from those with poor endogenous DNA preservation, without any false negative sam-

ples (i.e. do not pass screening but have endogenous DNA content over 1%) and only a small

number of false positive samples (i.e. 12 samples pass screening but have endogenous DNA

content below 1%). For screening purposes, a small number of false positives is acceptable,

while false negatives are less acceptable, so based on this dataset these IRSF parameters are

likely to be useful. We thus suggest two different thresholds which allow aDNA labs to decide

the optimal threshold depending on the characteristics and/or the number of their samples,

the lab resources, etc. A ‘moderate’ cut-off value of 4.2 which identifies 100% of samples with

endogenous DNA yields > 1% and eliminates about 40% of the samples with endogenous

aDNA < 1%. A ‘strict’ cut-off value of 3.7 which identifies c. 90% of samples with endogenous

DNA yields > 10%, c. 70% of bones with 1–10% endogenous DNA, while it eliminates c. 70%

of samples with endogenous DNA< 1%.

In tandem, carbonate content can be used as a complementary endogenous DNA indicator,

as c. 70% (n = 37) of the samples with C/P ratios > 0.20 contain endogenous DNA> 10%,

while c. 85% (n = 45) display DNA yields over 1%, and only c. 15% (n = 10) yield endogenous

DNA below 1% (Fig 2; S4 Table). When C/P decreases to the 0.13–0.20 levels, still 55%

(n = 13) of bones yield more than 10% endogenous DNA, and c. 80% (n = 18) of bones yield-

ing more than 1% endogenous DNA, while c. 20% (n = 5) of the samples have endogenous

DNA yields below 1% (Fig 2; S4 Table). In levels below 0.13 C/P ratio, samples with endoge-

nous DNA yields < 1% prevail (i.e. c. 90%; n = 10), and only c. 10% (n = 1) of samples contain

more than 1% endogenous DNA (Fig 2; S4 Table). Thus, the success rate of C/P values� 0.13
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for the distinction of archaeological bone with endogenous DNA yields > 1% is almost 100%,

and it eliminates c. 40% of poorly-preserved specimens. Compared to IRSF, there is only one

false negative sample and the same false positive samples, while the processing of all samples

using the same bioinformatic pipeline does not affect the success rates of this screening

method (S4 Table and S2 Fig).

Consequently, FTIR-ATR can be an effective, minimally destructive, and rapid tool for

DNA screening of archaeological and palaeontological bone with 100% successful identifica-

tion of bones containing > 1% endogenous DNA and an elimination of about half of the sam-

ples with endogenous DNA yields below 1%.

Fig 1. Endogenous DNA-crystallinity relationship. (a) Correlation of IRSF with endogenous DNA yields. The black

line at 3.7 IRSF represents the proposed ‘strict’ threshold, while the red line at 4.2 IRSF represents the ‘moderate’

threshold. The circles represent the petrous bones, and the rhombuses the other skeletal elements. (b) Distribution of

samples with well- (> 10%; green/solid diamond), moderately- (1–10%; yellow/large checkerboard), and poorly-

preserved (< 1%; red/dotted) endogenous DNA in categories based on crystallinity.

https://doi.org/10.1371/journal.pone.0235146.g001
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3.2. Endogenous DNA screening using the collagen wt. %

A handful of studies have previously reported a link between collagen and DNA degradation

[20,41,42]. DNA molecules have the ability to bind to the collagen fibrils and create a DNA-

collagen complex [69,70]. Fig 3 demonstrates a weak correlation (R2 = 0.30) between collagen

wt. % and endogenous DNA yields, as samples with relatively good collagen preservation may

not yield endogenous DNA, and vice versa. Although a lack of correlation has also been

reported in previous studies [e.g. 71], this dataset shows a possible cut-off point at c. 5% colla-

gen by weight which can be potentially used as endogenous DNA predictor (Fig 3; S4 Table).

Specifically, c. 95% (n = 12) of the samples with collagen wt. below 5% display endogenous

Fig 2. Endogenous DNA-carbonate content relationship. (a) Correlation of C/P with endogenous DNA yields. Line

represents the proposed C/P = 0.13 cut-off point. The circles represent the petrous bones and rhombuses the other

skeletal elements. (b) Distribution of samples with well- (>10%; green/solid dimond), moderately- (1–10%; yellow/

large checkerboard), and poorly-preserved (< 1%; red/dotted) endogenous DNA in categories based on carbonate

content.

https://doi.org/10.1371/journal.pone.0235146.g002
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DNA yields < 1%, and only c. 5% (n = 1) have high endogenous DNA preservation

(i.e. > 10%) (Fig 3). Similarly, c. 90% of the samples containing over 1% endogenous DNA

also have collagen wt. % over 5 (Fig 3). Therefore, when collagen content drops below 5%, the

chances for aDNA survival seem to diminish.

However, even if DNA decay accelerates with increasing collagen hydrolysis, screening

archaeological bone using collagen analysis is typically a destructive method, (but see the

recent report of the successful use of near-infrared [72]) is also relatively time-consuming and

labour-intensive, while the widespread use of an additional ultrafiltration step can have a

strong influence on the collagen yields [73–75]. Therefore, while collagen yield seems to be an

effective method to predict endogenous DNA content, it is most useful as an additional

Fig 3. Endogenous DNA-collagen content relationship. (a) Endogenous DNA preservation shows poor correlation

with collagen wt. %. Line represents the proposed collagen wt. % = 5 cut-off point. The circles represent the petrous

bones, while the rhombuses represent the other skeletal elements. (b) Distribution of samples with well- (> 10%;

green/solid diamond), moderately- (1–10%; yellow/large checkerboard), and poorly-preserved (< 1%; red/dotted)

endogenous DNA in categories based on collagen yield.

https://doi.org/10.1371/journal.pone.0235146.g003
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screening tool when samples have been already prepared for radiocarbon / stable isotope /

palaeoproteomic studies, yielding this type of collagen data.

3.3. Collagen screening using Am/P, Am/C1, and Am/C2

The Am/P ratio can potentially provide valuable information on the relative amount of organic

content in bone [58,59,76]. A strong correlation (R2 = 0.71; polynomial order = 2) between

Am/P and collagen wt. % can be seen in Fig 4 (see also S4 Table), highlighting the potential of

Am/P as collagen predictor for rapid screening of archaeological bone. Nonetheless, overtones

related to O-H stretching vibrations at 1640–1660 cm-1 (water), have been linked to increased

collagen estimates [59,62,76].

Fig 4. Am/P-collagen content relationship. (a) Collagen preservation shows strong polynomial (order 2) correlation

with Am/P. The red line represents the proposed Am/P = 0.02 cut-off point. The circles represent the petrous bones

and rhombuses the other skeletal elements. (b) Distribution of samples with well- (� 3%; green/solid diamond), and

poorly-preserved (< 3%; red/dotted) collagen in categories based on Am/P.

https://doi.org/10.1371/journal.pone.0235146.g004
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The relative phosphate content (exogenous phosphate uptake) can also lead to poor agree-

ment of collagen estimates with collagen yields [49,59]. It can be argued that improving the

accuracy of the amide I component requires its decoupling from the phosphate signal [49].

However, the use of the peak height at 1640 cm-1 after baseline correction (see 2.2.) does not

improve the correlation with collagen content (R2 = 0.70; polynomial order = 2). What clearly

improves collagen screening is the use of a cut-off point of 0.02 for Am/P, which allows the dis-

tinction of c. 98% of the samples (n = 174) which display collagen yields� 3% (Fig 4; Table 1).

This is combined with an elimination of 90% of specimens (n = 44) that contain< 3% collagen

by weight (Fig 4; Table 1). The success rate of the 0.02 Am/P threshold drops only slightly to c.

96% (n = 170) levels for samples with� 2% collagen by weight, while there is no change in the

elimination of poorly-preserved archaeological bone.

However, as nucleation of BAp crystals on collagen fibres can involve the chemical interac-

tion between negatively charged carboxyl groups (COO-) and positively charged calcium ions

(Ca2+) of the calcium carbonate crystals, the peak heights at c. 1410 cm-1 and c. 872 cm-1 could

be potentially used instead of phosphate in a modified Am/X ratio (where X can be either the

1410 cm-1 or the 872 cm-1 peak height after baseline correction). In vitro experiments con-

ducted by Rhee et al. [77] have demonstrated that the crystals formed on the collagen mem-

brane are carbonate-containing hydroxyapatite (HAp) crystals, and the shift of the carboxylate

band after nucleation indicated that there was a chemical interaction between the carboxylate

group of the collagen and the nucleated HAp crystals.

Indeed, the use of the Am/C1 (1640 cm-1 / 1410 cm-1) with a threshold at 0.1 can identify

99% of samples with collagen wt. %� 3 (S3 Fig), and 97% of samples with collagen wt. %� 2

(Table 1 and S4 Table). This threshold can also eliminate 82% of bones with collagen

yields < 3%, and 84% of bones with collagen yields < 2% (Table 1 and S4 Table). On the other

hand, the Am/C2 ratio (1640 cm-1 / 872 cm-1) successfully identifies c. 97% of samples with col-

lagen wt.� 3% (S4 Fig), and c. 94% of samples with collagen wt.� 2% with a 0.2 cut-off

(Table 1 and S4 Table). This is accompanied by an elimination of c. 90% of samples with

poorly preserved collagen (i.e. below 3% collagen wt.), which increases to c. 92% when the

cut-off for collagen content is 2% (Table 1). When the Am/C1 and Am/C2 thresholds are

combined, c. 99% of samples containing� 3% collagen by weight or c. 97% of samples

Table 1. Summary of FTIR-ATR screening success rates for DNA and collagen preservation.

DNA screening Successful identification (%) Successful elimination (%)

Index Threshold Endogenous DNA > 10% Endogenous DNA > 1% Endogenous DNA < 1%

IRSF � 4.2 (moderate) 100 100 46

IRSF � 3.7 (strict) 88 84 67

C/P � 0.13 100 93 42

IRSF and C/P� IRSF� 4.2 C/P� 0.13 100 100 42

IRSF and C/P� IRSF� 3.7 C/P� 0.13 92 91 46

Collagen wt. % � 5% 94 100 84

Collagen screening Successful identification (%) Successful elimination (%)

Index Threshold Collagen by weight� 3% Collagen by weight� 2% Collagen by weight < 3% Collagen by weight < 2%

Am/P � 0.02 98 96 90 90

Am/C1 � 0.1 99 97 82 84

Am/C2 � 0.2 97 94 90 92

Am/C1 and Am/C2
� Am/C1� 0.1 Am/C2� 0.2 99 97 82 84

�If two indices are used in conjunction, only one of the two thresholds need to be satisfied to keep samples, whereas samples need to fail both thresholds for elimination.

https://doi.org/10.1371/journal.pone.0235146.t001
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containing� 2% collagen by weight can be identified, while eliminating c. 82% of samples

containing below 3% collagen by weight or c. 84% of samples containing less than 2% collagen

by weight.

Although both indices display strong correlation with collagen yields (R2 = 0.73 and

R2 = 0.72, for Am/C1 and Am/C2, respectively; polynomial order = 2), post-mortem

fragmentation of the polypeptide chains may lead to the survival of peptide sequences con-

taining different numbers of the preserved carboxyl sites that are considered to be involved

in cation binding [78]. Similarly, structural differences exist between BAp carbonate and

exogenous calcium carbonate polymorphs (e.g. calcite; [79,80]) that might have been incor-

porated into BAp post-mortem and interact with the carboxyl groups (COO-) of collagen.

4. Summary

This study proposes the use of FTIR-ATR for the successful identification of archaeological

bone samples containing > 1% endogenous DNA,� 3% or� 2% collagen by weight, and

establishes thresholds for three commonly used mid-IR indices (IRSF, C/P, Am/P) with signif-

icant implications for palaeogenetic and palaeoproteomic research costs. Specifically:

1. The use of a ‘moderate’ cut-off point at 4.2 IRSF successfully identifies 100% of samples

with endogenous DNA yields > 10%, 100% of bones with endogenous DNA yields > 1%,

while it eliminates about half of samples with endogenous DNA below 1%.

2. The use of a ‘strict’ cut-off point at 3.7 IRSF successfully identifies c. 90% of samples with

endogenous DNA yields > 10%, c.80 % of bones with endogenous DNA yields > 1%, while

it eliminates c. 70% of samples with endogenous DNA below 1%.

3. The success rates of this approach are not affected by variances in the bioinformatic pipe-

lines followed in the various aDNA labs.

4. The complementary use of already existing collagen yields (cut-off point = 5%; for example

when collagen data have already been generated for radiocarbon / stable isotope / palaeo-

proteomic studies) can further improve screening for endogenous DNA (i.e. successful

identification of 100% of bones with endogenous DNA yields > 1%; elimination of c. 85%

of the specimens with endogenous DNA< 1%).

5. The use of the Am/P cut-off point at 0.02 allows the successful identification of 98% of the

specimens with collagen wt. %� 3%, while it eliminates about 90% of bones with less than

3% collagen yields. Additionally, it allows the successful identification of 96% of the speci-

mens with collagen wt. %� 2%, while it eliminates about 90% of bones with less than 2%

collagen yields

6. The combined use of cut-off points at 0.1 for Am/C1 and 0.2 for Am/C2 allows the success-

ful identification of c. 99% of samples containing over 3% collagen by weight and c. 97% of

samples containing over 2% collagen by weight, while it eliminates c. 82% of samples con-

taining below 3% collagen by weight or c. 84% of samples containing below 2% collagen by

weight.

Supporting information

S1 Table. List of samples. Skeletal elements, species, origin, archaeological period and chro-

nological age of each sample. The number in the species column denotes the different individ-

uals with more than one sample. L = left; R = right; P = proximal diaphysis; M = mid
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S1 Fig. Endogenous DNA-crystallinity relationship. Distribution of samples with well-

(> 10%; green/solid diamond), moderately- (1–10%; yellow/large checkerboard), and poorly-

preserved (< 1%; red/dotted) endogenous DNA in categories based on crystallinity (n = 85).

Endogenous DNA % were estimated using the same bioinformatics pipeline (see section 2—

supporting information for details) for all samples to eliminate the potential effects of the dif-

ferent bioinformatics protocols followed by the three different labs on the estimated yields.

THA2, THA3, and THA11 samples were not reprocessed, thus excluded from this graph. The

c. 90% of the well-preserved specimens with endogenous DNA> 10% (n = 45) display IRSF

values< 3.7, and only c. 10% (n = 7) have 3.7� IRSF� 4.2. The samples that yield endoge-

nous DNA below 1% predominantly display IRSF values over 3.7 (c. 70%; n = 14), with a small

subset (c. 30%; n = 6) characterized by crystallinity below the 3.7 threshold. All samples with

IRSF > 4.2 have endogenous DNA yields below 1%. Success rates are similar to those reported

in the text, suggesting that this screening method is not affected by the bioinformatics pipe-

line.
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S2 Fig. Endogenous DNA-carbonate content relationship. Distribution of samples with

well- (> 10%; green/solid diamond), moderately- (1–10%; yellow/large checkerboard), and

poorly-preserved (< 1%; red/dotted) endogenous DNA in categories based on carbonate con-

tent (n = 85). Endogenous DNA % were also estimated using the same bioinformatics pipeline

(see section 2—supporting information for details) for all samples to eliminate the potential

effects of the different bioinformatics protocols followed by the three different labs on the esti-

mated yields. THA2, THA3, and THA11 samples were not reprocessed, thus excluded from

this graph. The c. 85% of the specimens with endogenous DNA > 1% (n = 64) display C/P

values> 0.13, and only c. 15% (n = 11) have endogenous DNA yields below 1%. When C/P

drops below 0.13, samples with endogenous DNA yields < 1% prevail (i.e. c. 90%; n = 9), and

only c. 10% (n = 1) of samples contain more than 1% endogenous DNA. Success rates are simi-

lar to those reported in the text, suggesting that this screening method is not affected by the

different bioinformatics pipeline.
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S3 Fig. Am/C1-collagen content relationship. (a) Collagen preservation shows strong polyno-

mial correlation with Am/C1 (R2 = 0.73; polynomial order = 2). The red line represents the

proposed Am/C1 = 0.1 cut-off point. The circles represent the petrous bones and rhombuses
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sents the proposed Am/C2 = 0.2 cut-off point. The circles represent the petrous bones and
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Am/C2.
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