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Abstract

This master’s thesis deals with species distribution modeling (SDM) for eight selected
prey animals of the Neanderthals and the anatomically modern human within the frame-
work of the Collaborative Research Center 806 ("Our way to Europe"). This research was
realized for three methods in three climatically different time slices during the Late Pleis-
tocene. One profile method, one regression method and one machine learning method
were used. A model was developed that performs these three methods in order to obtain
a potential distribution of the paleofauna in the Late Pleistocene and to link it to the
dispersal of humans in this region. The results show that all three methods predict con-
ditions for the presence of the species which may have hunted from both Neanderthals
and anatomically modern humans. However, there are differences in the predicted re-
gions between the individual methods for each species. Another task was to determine
the best performing method. Based on this work, MaxEnt, a machine learning method,
emerged as the best performing method among the applied methods.
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1 Introduction

1.1 Main Purpose of the Work

How did the human species make it to Europe? This question and the related cultural-
environmental context of the distribution of anatomically modern humans from their
origin in Africa to Central Europe is the main objective of the Collaborative Research
Centre 806 (CRC 806) "Our Way to Europe", a consortium of scientists and researchers
from the universities of Cologne, Bonn, and Aachen. Archeological and geoscientific
methods are used to understand the ancestral migration routes from Africa to Europe
and to reconstruct past climates, cultures, population changes and living conditions
(CRC 806 2018a). This work is a joint project of the clusters C1 (Settlement Patterns
and Climate Change in the Late Pleistocene of the Western Mediterranean) and Z2
(Data Management and Data Services).

The framework of cluster C1 and this work is the transition from Middle to Upper
Paleolithic. The period from 45 to 25 kya is assigned to the demise of the Neanderthals
and the beginning of the dispersal of the anatomically modern human in Europe. The
Iberian Peninsula and particularly its southern part is seen as a refuge for Neanderthals
and is a central subject in the research of the project. A very diverse geography of
the Iberian Peninsula and the resulting climatically very distinctive regions favor the
research on relationships between the environment and human adaptation (CRC 806
2018b). One of the southernmost boundaries of the steppe-tundra expansion during
the Pleistocene is formed by the Iberian Peninsula. It was settled from cold-adapted
large mammals, which are also known as the Mammuthus-Coelodonta faunal complex
(Kahlke 1999), during the coldest time periods in the Pleistocene (Álvarez-Lao &
García 2010).

Selected species (Chapter 2.2.1) of these cold-adapted mammals are the subject of this
work. The recent distribution based on the data of GBIF Secretariat (2017) forms the
basis of the development of a model to compute the potential distribution. Furthermore,
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1 Introduction

Chapter 2 describes the preparation of the necessary data for specifying the environment
in recent and past times, including bioclimatic variables (Hijmans et al. 2005; Willmes
et al. 2018), Köppen-Geiger climate classification (Willmes et al. 2017), GebCo data
(General Bathymetric Chart of the Oceans 2014) as a Digital Elevation Model (DEM)
and Terrain Surface Classification according to Iwahashi & Pike (2007). The use of
these data in the context of three diverse methods about species distribution modeling
(SDM; Chapter 2.1) is intended to determine a possible distribution of prey for hunters.
The spatiotemporal context is limited to the Western Mediterranean of the Late Pleis-
tocene, more precisely Heinrich event H5, Greenland Interstadial GI11, and Heinrich
event H4 (Chapter 2.2). The application and comparison of three representatives among
the most commonly used methods within the distribution modeling using the paleo-
environmental data is described in Chapter 2.3, followed by the results (Chapter 3).
The discussion (Chapter 4) also deals with the question which one among the applied
methods is the best performing method.

The compilation of the methods is mainly based on the recommendations of Hijmans
& Elith (2017), who offer a good framework for the concepts in species distribution
modeling. The selection of the species is based on Álvarez-Lao & García (2010),
Salazar-García et al. (2013), and de Andrés-Herrero et al. (2018), while the
implementation for the description of the environment is based on Dormann et al.
(2013) and Beaumont et al. (2016). Elith et al. (2006) and Hijmans (2012) provide
helpful hints for the evaluation of the applied methods in order to answer the questions
of this work adequately.

1.2 Current Status in Research

In recent years, the access to species’ occurrence data, also known as primary biodiver-
sity data or presence data has increased (Soberón et al. 1996; Graham et al. 2004;
Soberón & Peterson 2004). These opportunities are supported by the trend of digi-
tizing the dataset, referencing it with geographic coordinates and simplifying the access
to large databases for the observation of species. With this large data pool, a basis
for the estimation of ecological niches is given. The additional environmental informa-
tion needed, such as climate, topography, soils, oceanography, vegetation, and many
more, is now available for almost the entire planet and in increasingly finer resolution
(Peterson et al. 2011). The work of Grinnell, Hutchinson, and Austin, who became
known as pioneers of the ecological niche, is gaining new popularity as ecological and
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1 Introduction

historical dimensions of biogeography can now be linked. These new enabled tools have
been termed species distribution modeling (Guisan & Zimmermann 2000; Hirzel et al.
2002; Guisan & Thuille 2005; Araújo & Guisan 2006). It is helpful to discuss actual
and possible spatial distributions of species in the past, present, and future (Peterson
et al. 2011).

Not only the pool of a big data collection is used to accomplish this goal, but also
the principle of machine learning, which was first described by Samuel (1959). He
specifies machine learning as the generic term for the broad field of artificial generation of
knowledge from experience using statistical techniques. An artificial system learns from
examples and can generalize these after completion of the learning phase by recognizing
patterns and regularities in the provided learning data, without being programmed for
a specific task (Koza et al. 2006). Thus, the system can also evaluate data which were
previously unknown as a learning transfer or fail to learn these unknown data, which
is referred to as overfitting or undercomputing (Dietterich 1995). The principle of
distribution modeling uses these technical possibilities.

Since species distribution can be determined for terrestrial, marine, and freshwater en-
vironments, this work has been carried out by many biologists over a variety of species.
Predominately terrestrial species were the main focus of attention to obtain a map of
species density and identify conservation areas of biogeographically important species
(Hortal et al. 2004; Buse et al. 2007). But also the occurrence of geomorphologi-
cal structures can be identified with the help of the tool for distribution modeling, as
Luoto et al. (2004) conducted with a climate-based spatial model for the distribution
of palsa mires in northern Europe, the most marginal permafrost features at the edge
of the permafrost zone. Considering literature, the names of the models can be very
different. SDMs can be named also bioclimatic models, climate envelopes, ecological
niche models (ENMs), habitat models, resource selection functions (RSFs), range maps,
loosely-correlative models or spatial models (Elith & Leathwick 2009b). In this work
the term SDM is used.

SDMs are being used more and more often in archeology as the research is moving from
simple narrative biogeographic descriptions and interpretations of fossil data towards
a new direction of describing and estimating species distribution in the past, shifts
and extinction events (Rodriguez-Sanchez & Arroyo 2008) or the effects of climate
changes on species distributions and human cultures (McDonald & Bryson 2010;
Polly & Eronen 2011; Walls & Stigall 2011).
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In addition to Anatolia, Turkey (Collins et al. 2018), the Iberian peninsula has been
the subject of several paleogeographic investigations (Varela et al. 2010; Smith et al.
2013; Becker et al. 2016; de Andrés-Herrero et al. 2018) with the help of SDM. The
main purpose of these studies was to link hunter-gatherer economies and lifestyles with
the distributions of faunal and floral resources in the Upper Paleolithic an Neolithic.

A helpful tool used in many archeological studies is R, which was also applied in the
calculations of this work. R is a programming language for statistical computing by R
Core Team (2018) (version 3.5.0). The methods for SDM are provided in the package
dismo (version 1.1-4) by Hijmans et al. (2017).

1.3 Study Region: The Western Mediterranean

Figure 1: Map of the complete area for modeling and the research area of the Western
Mediterranean (black rectangle).

The study area in the Western Mediterranean for this work consists of the Iberian
Peninsula, which ranges today from Spain, Portugal, Andorra and Gibraltar in the
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north, and Morocco on the African continent in the south (black rectangle in Figure
1). The Iberian Peninsula borders the Mediterranean Sea to the east and south and
the Atlantic Ocean to the west and north. Morocco is bordered to the north by the
Mediterranean Sea, to the east by Algeria, to the south by Western Sahara, and to
the west and northwest by the Atlantic Ocean. The Strait of Gibraltar forms a narrow
point between the Atlantic Ocean and the Mediterranean Sea respectively the Iberian
Peninsula and Morocco.

The region is characterized by a Mediterranean climate (Peinado Lorca & Martínez-
Parras 1987; Ibáñez et al. 2013) with mild winters and hot and dry summers (Sánchez
Goñi et al. 2000). The northen Iberia is located in an Atlantic bioclimatic region
(Ibáñez et al. 2013), which is mainly influenced by the winter inter-annual variability
mode and furthermore defines the North Atlantic Oscillation (Trigo et al. 2004). The
resulting strong pressure gradient between the Azores high and Icelandic low generates
a strengthening and northward displacement of the westerlies over Europe. As a conse-
quence, the Iberian Peninsula experiences different episodes of extreme drought (Trigo
et al. 2004). The geographic position of the Mediterranean Basin makes the region of the
Western Mediterranean notably vulnerable to climate change (Adloff et al. 2015).

According to the Food and Agriculture Organization of the United Nations (FAO),
Acrisols, Cambisols and Regosols are among the most widespread soils in the Iberian
Peninsula. Cambisols, in particular, make up a large part of the distribution (FAO 1981).
The beginning of soil formation allows intensive agricultural use of this productive soil.
In the southwest of the Iberian peninsula, there are some soils of the Acrisol type, which
severely restrict agricultural use. The western part of Iberia is associated with soils of
type Regosol, which can be used for irrigated farming and grazing (FAO 1998). For
Morocco, the FAO (1977) mainly shows Cambisols in the northern part. Leptosols and
Calcisols are among the predominant types of soil in the south, but are also prevalent
over the entire country (FAO 1977). Lithosols describe shallow soil over hard rock with
less rainfed agriculture. The main uses are tree crops and extensive grazing. Calcisols
are shallow, low-humus mineral soils with secondary lime enrichment of the semi-desert
and predominantly used for low volume grazing of ungulates.

The region is characterized by wide mountain areas in Iberia and Morocco. The border
in the northeast to France is formed by the Pyrenees. The central highland (Inner
Plateau) of the Iberian Peninsula is crossed by three mountain ranges that strike from
northeast to southwest: Cantabrian Range in the north, Central System in the interior
of the peninsula and Baetic System in the south which reaches up to 3,483 m a.s.l. at
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Mulhacén as the highest peak in the Iberian Peninsula (Simón et al. 2000). Morocco is
characterized by the Atlas Mountains that strike in general from northeast to southwest,
especially in the northern part of the country. It is subdivided into the Anti-Atlas range
in the south, the central High Atlas and the two northern ranges of the Middle Atlas
and the Rif. Its highest point is marked by the summit of Toubkal with 4,167 m a.s.l.
which is located in the south-western part of the High Atlas range (Hughes et al. 2011).
The southern and southeastern regions of Marocco are less densely populated, as desert
areas of the Sahara begin here and are included in the climate region of the warm desert
(Kottek et al. 2006).

6



2 Methods and Data

2.1 Species Distribution Modeling

Not only the relationship between ecological niches and geographic distributions of
species over space and time can be described as complex. The concept of the eco-
logical niche itself is also assigned to a broad variety and meanings. Often, the term
niche is used in an attempt to find answers to the questions about the combination of
environmental factors that enable a species to exist in a geographical area, as well as
what effects the species has on these environmental factors (predictors). Hutchinson
(1957) defined this space as the fundamental niche. It is described as a hypervolume
of environmental variables in which each point corresponds to a state of environment
that allows a species to exist indefinitely. The most common applications are based on
a species in relation to its area of distribution (existence of a species) where the niche
is considered as climatic and habitat requirements of the species (Grinnel 1917). In
contrast, Elton (1927) regards the niche as the functional role of an animal on the
community, meaning the local effects. The existence is taken for granted, but the focus
is set on the impact (Peterson et al. 2011).

The environment of a species consists of extremely diverse factors. These factors have to
be distinguished into variables that describe environmental aspects which are influenced
by the species and those that affect the fitness of the species without being altered. This
creates a multivariate environmental space based on variables that are not dynamically
modified (linked) by the species (i.e. climate, topography) and, in contrast, to variables
that are dynamically modified (non-linked), such as consumed resources (Harper 1977;
Austin 1980; Austin & Smith 1989; Begon et al. 2006). Hutchinson (1978) also
calls these non-linked variables scenopoetic. The variables, described in Chapter 2.2
and used in this work, belong to the scenopoetic variables and construct a multivariate
environmental space in which niches are just simple subsets (Peterson et al. 2011). The
usage of scenopoetic variables is limited to climate data and topography data, as other
environmental variables have no effect on the distribution of species in an area beyond
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2 Methods and Data

the regional scale domain (200-2,000 km). The applied scale in this work belongs to the
continental domain (2,000-1,000,000 km; Pearson & Dawson 2003).

The term species distribution describes the spatial arrangement of a selected species
across a defined landscape. The species distribution model (SDM) is a spatially explicit,
quantitative model that relates occurrence data to environmental characteristics for the
selected species (Figure 2). Quantifying the species occurrence related to environmental
factors using SDM, enables a large number of approaches for scientific questions where
a model-based prediction of the occurrence of a species is helpful (Duarte et al. 2018).
SDM is used widely across terrestrial, freshwater, and marine subjects. Therefore, the
modeling requires sometimes extrapolation in space and time (Elith & Leathwick
2009b).

Source: Duarte et al. (2018)

Figure 2: Visualization of the different components involved when developing species
distribution models (SDMs).

For centuries, relationships between the distribution of a species and the physical en-
vironment have been identified and recorded. Initially, qualitatively, as described by
Grinnel (1904), the use of numerical models has been growing for quite some time in
order to both describe patterns and make predictions (Elith & Leathwick 2009b).
The numerical models can be organized in different methods, depending on the type of
data used in the model. These include presence-only data, presence/absence data, and
replicate detection/nondetection data (Duarte et al. 2018).

In models for presence-only data a random number of confirmed geographical locations
where a species occurs is the minimum required data. These presence-only data can be
related to landscape and climatic predictors if they are not overly distorted by sampling
or bias (Duarte et al. 2018). A bias of the data arises whenever an unevenly distributed
sampling is present in the data (Peterson et al. 2011). Methods using this type of data
are commonly referred to as machine learning methods, because they randomly generate
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2 Methods and Data

its own background locations that may or may not overlap with the presence-only data.
This will allow the method to estimate the full range of environmental conditions of a
species potentially inhabiting the given region. Similar methods which do not generate
any background or absence data are classified in the profile methods category (Duarte
et al. 2018; Hijmans & Elith 2017).

But presence/absence data can also be used to develop SDMs. These data consist of
combined successful and unsuccessful occurrences of a species during observation of a
random subset or by generating pseudo-absence data points. Like with the presence-only
models, the models of these methods are only useful for developing SDMs if the data
are not compromised by sampling or bias. Presence/absence data are required in the
different methods of regression models (Duarte et al. 2018; Hijmans & Elith 2017).

Often there is bias in observational data for a species that results from incomplete ob-
servations. For this, the terms "presence-only" and "presence/absence" were replaced for
newer models such as single-season, multiseason and dynamic occupancy models with the
terms "detection-only" and "detection/non-detection" (MacKenzie et al. 2017). These
new type of methods are not used in this work.

Most older studies focus often on ecological aspects or evolutionary biology. The shift in
focus to predicting distribution has been driven by advances in model algorithms, greater
availability of spatial environmental data, and a growing demand for land management
maps and allocation of protected areas. There are two ways the prediction in SDM
can be used: a) in model-based interpolation to unsampled sites predictions are applied
to new sites but within the same general time slice, and b) to carry out forecasts of
new and unsampled regions for future or past climates, which is embraced by the terms
extrapolation or forecasting. The data for new regions and time slices must be carefully
evaluated, especially for the prediction values that are outside the region of training data
(Elith & Leathwick 2009b).

Referred to Elith & Leathwick (2009a), Peterson et al. (2011), and Hijmans &
Elith (2017), the first steps of a SDM consist of identifying the ecological process,
collecting the necessary training data, and examining it. These include the species
occurrence data and the environmental predictor variables that have to be used in order
to model the potential habitats and distributions. Topographical and climatic data from
different sources, in the form of tables for the individual species or as raster files for the
predictor variables, were collated for this work. The following step of this work is the
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preparation of the data for the selected study region in order to meet the requirements
of the programming language and the respective method.

2.2 Spatiotemporal Context and Preparation of the Data

The raster files used for this work as input variables have a west-east extension of 12◦W
to 20◦E and a north-south extension of 60◦N to 28◦N. With a cell size of 0.05 this
corresponds to a resolution of 640x640 pixels. Both the input and the result maps
refer to geographic coordinates (WGS-84) in an equirectangular (plate carrée) projection
(EPSG: 4326). This expansion of the region had to be applied because at present
times some species have suitable living conditions only outside the region of the Western
Mediterranean. All finding spots of the species are located within this extended region.
The results will be limited to the actual study area, the Western Mediterranean (Figure
1). Here, the west-east extent covers a range of 12◦W to 4◦E and a north-south extension
of 44◦N to 28◦N.

Source: Author’s own, based on Lisiecki & Raymo (2005)

Figure 3: Display of the selected time slices and their assigned δ18O.

Projective time slices (Figure 3) in the Late Pleistocene and the last glacial were chosen
in whose the northern hemisphere and the study area experienced climate and environ-
mental changes (Sánchez Goñi & Harrison 2010). With 47 kya, Heinrich event 5
(H5) is the oldest period in this model (Hemming 2004). It is succeeded by a section
of a short-term, relatively warm period within the glacial, the Greenland Interstadial 11
(GI11) with its midpoint at 43 kya (Rasmussen et al. 2014). The most recent period
of this work is Heinrich event 4 (H4), which is dated to 38 kya (Hemming 2004).

Heinrich events describe the point of time when, compared to the ambient conditions of
the last glacial, extreme cold and dry glacial conditions dominated on the eastern North
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Atlantic edge and the Western Mediterranean (Hemming 2004). Heinrich (1988) first
documented these anomalous layers of ice-rafted detritus (IRD) which may have been
derived from the region around Hudson Strait into the North Atlantic. Hemming (2004)
lists three possible mechanisms for the origin of the detritus layers:

• binge-purge cycle of the Laurentide ice sheet,

• jökulhlaup activity from a Hudson Bay lake (a massive flood that takes place when
the height of a dam is exceeded by the lake level),

• ice shelf buildup or collapse fed by Hudson Strait.

Dansgaard–Oeschger (D-O) cycles (Dansgaard et al. 1984) characterize a period of a
rapid climate change, marked by warming and followed by a cooling and appear to be
related to Heinrich events. Only the initial rapid warming event describes the D-O event.
This event and the following slow phase of a subsequent period of cooling is referred to
as the Greenland Interstadial (Sánchez Goñi & Harrison 2010).

The paleo environmental features are characterized by a mixed Quercus forest during
interstadials and semi-desert vegetation during the Heinrich events and D-O stadials
(Sánchez Goñi et al. 2002; Bout-Roumazeilles et al. 2007; Fletcher & Sánchez
Goñi 2008). The climatic characteristics of the first and last phases of H5 and H4 are
described as mild and humid climate in southwestern Europe. The middle phase revealed
a cold and dry climate in Iberia, especially the western Iberian Peninsula experienced an
extreme continental dryness (Sánchez Goñi et al. 2000; Fletcher & Sánchez Goñi
2008).

Sediment sequences of Los Casares cave-Seno A in the province of Guadalajara, Spain,
contains evidence of both Neandertal and carnivore activity in the warm and humid
period of GI11, which represents one of the latest occurrences of Neandertals in the
interior from the Iberian peninsula. Total disappearance of Neandertals of interior Iberia
is dated to H4. A survival of this human species in Iberia after H4 is limited to regions
of the southern coasts (Alcaraz-Castaño et al. 2017).
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2.2.1 Species

Eight prey species, which are not extinct at recent time, were selected for the modeling.
Most of them are located in the region of the Western Mediterranean. The number
of downloaded finding spots varies between 173 and 57606 (Table 1). The selection of
the species is based on the previous research of de Andrés-Herrero et al. (2018),
Salazar-García et al. (2013), and Álvarez-Lao & García (2010). All finding spots
were downloaded from the Global Biodiversity Information Facility (GBIF).

The GBIF provides its collected data about all types of life on Earth as open access.
It was established in 2001 as an international network and research infrastructure and
funded by the world’s governments with its Secretariat in Copenhagen. With associated
data-holding institutions around the world it is possible to share information about lo-
cation and time of recorded species. Sources include museum specimens collected in the
18th and 19th centuries, as well as geotagged smartphone photos by amateur photogra-
phers and provided to the database at the recent time (GBIF Secretariat 2018).

The final lists contain all filtered finding spots of living animals (human observation
and living specimen as basis of record) of the respective species to which geographical
coordinates are available. The lists represent the population as of March 3, 2018. The
function in Listing 1 from the dismo package downloads the species occurrence records
from the GBIF database.

Listing 1: Function to download the genus and species related finding spots from GBIF, Capra
pyrenaica in this example

1 gbif_ species <- gbif(genus="capra", species =" pyrenaica ")

All selected species represent the cold-adapted mammals of the Iberian Late Pleistocene,
which used to inhabit the Iberian Peninsula in its coldest period. Only a few radiocarbon
dating have been performed in the past (Álvarez-Lao & García 2010). Furthermore,
there is no possibility of obtaining a list of geographical finding spots of the selected
species, which has been assigned to the time slices. For this reason, both the species
selection and the finding spots, were restricted to living specimen of today’s time, which
has been done in several studies before (Depraz et al. 2008; Rodriguez-Sanchez &
Arroyo 2008; Solomon et al. 2008; Alba-Sánchez et al. 2010).

The data are available as comma separated values (csv) and formatted as proposed by
Peterson et al. (2011). In addition to an identification number, the first two columns
contain the longitude and then the latitude value, followed by an indication of presence
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or absence. Since this is presence-only data, all occurrences in this column are filled
with the number one.

Table 1: The selected species including their order and family for modeling and the imported
number of finding spots

Genus & Species Author & Year English name Initial finding spots
Artiodactyla
Antilocapridae
Rangifer tarandus Linnaeus 1758 Reindeer 511
Bovidae
Bos taurus Linnaeus 1758 Ox 341
Capra pyrenaica Schinz 1838 Spanish Ibex 1131
Rupicapra pyrenaica Bonaparte 1845 Pyrenean Chamois 1072
Cervidae
Capreolus capreolus Linnaeus 1758 European Roe Deer 57606
Cervus elaphus Linnaeus 1758 Red Deer 17697
Suidae
Sus scrofa Linnaeus 1758 Wild Boar 14358
Perissodactyla
Equidae
Equus caballus Linnaeus 1758 Horse 173

Source: iNaturalist.org (2018f)

Figure 4: Rangifer tarandus Linnaeus,
1758.

Rangifer tarandus Linnaeus, 1758, the Reindeer
(Figure 4), has a geographical distribution in the
circumboreal regions of tundra and taiga in Sval-
bard, Norway, Finland, Russia, Alaska (USA),
Canada, including the most arctic islands, as well
as the north of Idaho and the Great Lakes region
(USA), Greenland and south to north Mongolia.
Rangifer tarandus is described as feral in Inner
Mongolia and Heilungkiang, China in present time
(Grubb 1993a). Based on Weinstock (1998) the
reindeer was a regularly prey of human and non-
human hunters over a large geographical area from today’s region of Ukraine in the east
to Great Britain in the west during the last glacial.
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Source: iNaturalist.org (2018a)

Figure 5: Bos taurus Linnaeus, 1758.

Bos Linnaeus, 1758 describes the genus of wild
and domesticated cattle (Figure 5) and is divided
into five species: Bos frontalis, Bos grunniens, Bos
javanicus, Bos sauvali and Bos taurus (Grubb
1993a). While Bos taurus Linnaeus, 1758 is extinct
in the wild, the distribution of the four remaining
species is predominantly in Asia and irrelevant to
this model. In the defined extent only Bos taurus
plays a decisive role. Bos taurus mainly lived in
Europe and western Russia. In the Middle East
Bos taurus survived at least until the Iron Age and is nowadays held worldwide as a
domesticated form (Grubb 1993a). Bos primigenius, the aurochs, is an extinct species
of the genus Bos. During the late Pleistocene and early Holocene, the aurochs dispersed
over large areas of Europe, Asia and North Africa and is regarded as a wild ancestor of
modern domesticated cattle (Edwards et al. 2010).

Source: iNaturalist.org (2018b)

Figure 6: Capra pyrenaica Schinz,
1838.

The geographical distribution of Capra pyrenaica
Linnaeus, 1758, the Spanish Ibex (Figure 6), is ex-
clusively limited to the Iberian Peninsula (Grubb
1993a). The hypothesis of Engländer (1986) con-
siders that Capra pyrenaica derived from an Alpine
Ibex (Capra ibex) type, which lived in the Pyre-
nees between the glaciations of Riss and Würm.
Fossil remains of Capra pyrenaica have been found
throughout the Iberian Peninsula and paleonto-
logical remains indicate the presence of the genus
Capra in the Iberian Peninsula for at least a million
years (Alados & Escós 1996). According to Alados (1985), this fact and findings from
various prehistoric paintings suggest a wide distribution, as well as a wide abundance of
the Spanish Ibex during the Paleolithic and Neolithic periods.
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Source: iNaturalist.org (2018g)

Figure 7: Rupicapra pyrenaica
Bonaparte, 1845.

The geographical distribution of Rupicapra pyre-
naica Bonaparte, 1845, the Pyrenean Chamois
(Figure 7), is limited to northern Spain and the
Apennine Mountains in Italy (Grubb 1993a).
Chamois are described as "mountain-dwelling,
middle-sized ungulates presently distributed over
most of the middle- to high-altitude mountain
ranges" (Masini & Lovari 1988). The genus Rup-
icapra originated in asian mountain areas west of
the Himalayas during the late Miocene. Rupicapra
dispersed in two different waves of colonization to-
wards North America and western Europe during
cold periods of the middle Pleistocene. Rupicapra pyrenaica possibly differentiated di-
rectly from older representatives in western Europe during the Riss glaciation (Masini
& Lovari 1988).

Source: iNaturalist.org (2018c)

Figure 8: Capreolus capreolus
Linnaeus, 1758.

While Capreolus capreolus Linnaeus, 1758, the Eu-
ropean Roe Deer (Figure 8), nowadays occurs in
Europe to the west of Russia, Turkey, the Cauca-
sis region, northwestern Syria, northern Iraq, and
northern Iran, it is considered extinct in Lebanon
and Israel (Grubb 1993a). The Roe Deer was al-
ready present in Europe at least 600.000 years ago
and has since been known from the glacial and the
interglacial. The northern border varied in Late
Pleistocene, but was distributed up to 10 degrees
further north in the western parts compared to
its present distribution area, but less distinctive in
the eastern part. Within interstadial episodes the
distribution area expanded further northward into
the Ural Mountains and the mountains of south-
ern Siberia, where the Roe Deer survived in regions of forest and bush vegetation in
periglacial forest-steppes. Therefore, the distribution of the Roe Deer was not only
restricted to the Western Mediterranean but repeatedly reached regions of central Eu-
rope and farther, which is probably due to the favorable climatic conditions during the
relatively mild interstadial episodes (Lister et al. 1998; Sommer et al. 2009).
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Source: iNaturalist.org (2018d)

Figure 9: Cervus elaphus Linnaeus,
1758.

Cervus elaphus Linnaeus, 1758, the Red Deer (Fig-
ure 9), has a wider geographical distribution. In
addition to Tunisia and northeastern Algeria, the
Red Deer was able to settle in Europe east to the
Crimea and the Caucasus. Furthermore, the habi-
tat extends over Turkey, Northern Iran, Central
Mongolia, the west and north of China and the Us-
suri region (Russia). In Corsica and Sardinia, the
Red Deer settled since the Neolithic. The distri-
bution in North America does not matter for this
modeling (Grubb 1993a). European red deer in
Late Pleistocene were very much larger than mem-
bers of the same species in recent times or the post-Pleistocene (Beninde 1937; Walvius
1961). Hominins of the European continent hunted and used the Red Deer as a natural
resource since the Middle Pleistocene (Sommer et al. 2008). Clutton-Brock et al.
(1982) specified the body size of red deer to reach its peak during the last glaciation and
has gradually decreased until present day.

Source: iNaturalist.org (2018h)

Figure 10: Sus scrofa Linnaeus, 1758.

The distribution of Sus scrofa Linnaeus, 1758, the
Wild Boar (Figure 10), which is relevant for the
model, is stated by Grubb (1993a) with North
Africa and Europe. Additional occurrences were
reported from Southern Russia and from China all
the way south to the Middle East and meanwhile
as extinct in British Isles and Scandinavia. The
population of Corsica and Sardinia and also for-
merly Egypt and North Sudan are or were old feral
origin. The Wild Boar is widespread as feral pop-
ulations among others in Norway, Sweden and South Africa. According to Melis et al.
(2006) the number of Wild Boars is strongly and positively correlated with the mean
annual temperature, with an expected increase as well in local population densities as
an expansion of the geographical range north and north-eastwards. Biogeographically,
hunting by wolves seems to have a lower impact on wild boar density than climate and
vegetation productivity, although wild boars have been reported as the preferred prey
of wolves, especially in the southern regions of Europe.
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Source: iNaturalist.org (2018e)

Figure 11: Equuus caballus Linnaeus,
1758.

Already in the classical antiquity the distribution
of the domestic horse (Figure 11) is specified up
to the European west to Spain. The further dis-
tribution into the late 18th Century of Equus ca-
ballus Linnaeus, 1758 ranges from Poland and Rus-
sian Steppes east to Turkestan and Mongolia. Wild
population survived in southwestern Mongolia and
adjacent Kansu, Sinkiang, and Inner Mongolia
(China). But they are domesticated worldwide and
feral in Portugal, Spain, France, Greece, Iran, Sri
Lanka, Australia, New Zealand, Colombia, Hispan-
iola, Canada, USA, Galapagos, and other oceanic
islands (Grubb 1993b). Equus caballus is able to
tolerate a wide range of temperatures and domi-
ciled with more or less open forest but can also be
present in a number of different paleoecosystems
(Álvarez-Lao & García-García 2006).

2.2.2 Bioclimatic Data

Environmental data are provided by the bioclimatic variables of WorldClim (Hijmans
et al. 2005) through interpolated climate surfaces for worldwide land areas. Climate
data at this very high resolution may be very beneficial for modeling mountain areas
and other areas with strong climate gradients. The 30 arc-seconds tiles of WorldClim
are provided in GeoTIFF format.

The global climate data collection for current conditions consists of interpolations of
observed data and is representative for the climatological reference period from 1960 to
1990. The bioclimatic variables were calculated by average monthly climate data for
minimum, mean, and maximum temperature, as well as precipitation.

The bioclimatic variables of time slices H5, GI11 and H4 were derived according to the
method of Willmes et al. (2018), where monthly paleoclimate data are calculated for
the last 1.2 million years in a 1,000 year temporal resolution. The method is based on a
spatio-temporal interpolation on the basis of δ18O values between modeled paleoclimate
and observed current climate data. An adaptation in terms of extent, resolution, and
cell size to the project-related porperties is necessary.
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Listing 2: Function to create the bioclimatic datasets

1 b <- biovars (prec ,tmin ,tmax)

The function in Listing 2 of the dismo package enables the creation of bioclimatic vari-
ables (Nix 1986; Booth et al. 2014) from monthly climate data, like the above men-
tioned paleoclimatedata. The data are imported as raster files of precipitation data
(prec), minimum temperature data (tmin), and maximum temperature data (tmax).
The results are generated in raster files and consist of 19 variables for each time slice
(Table 2). Subsequently, these bioclimatic variables are in the same format as World-
Clim, but without having to adjust them in resolution since they have already been
generated with the project-specific properties.

Table 2: Description of the 19 bioclimatic variables which are generated from the dismo
package (Hijmans et al. 2017)
File Bioclimatic variable Variable Description
bio1 Annual Mean

Temperature
bio11 Mean Temperature of

Coldest Quarter
bio2 Mean Diurnal Range

(Mean of monthly (max
temp - min temp))

bio12 Annual Precipitation

bio3 Isothermality (bio2/bio7)
(* 100)

bio13 Precipitation of Wettest
Month

bio4 Temperature Seasonality
(standard deviation
*100)

bio14 Precipitation of Driest
Month

bio5 Max Temperature of
Warmest Month

bio15 Precipitation Seasonality
(Coefficient of Variation)

bio6 Min Temperature of
Coldest Month

bio16 Precipitation of Wettest
Quarter

bio7 Temperature Annual
Range (bio5-bio6)

bio17 Precipitation of Driest
Quarter

bio8 Mean Temperature of
Wettest Quarter

bio18 Precipitation of Warmest
Quarter

bio9 Mean Temperature of
Driest Quarter

bio19 Precipitation of Coldest
Quarter

bio10 Mean Temperature of
Warmest Quarter

Mean annual temperature and annual precipitation represent annual trends, annual
range in temperature and precipitation impart seasonality and temperature of the coldest
and warmest month, and precipitation of the wet and dry quarters indicate extreme or
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limiting environmental factors. These bioclimatic variables are often used in species
distribution modeling and the similar ecological modeling techniques (de Andrés-
Herrero et al. 2018; Becker et al. 2016; Franklin 2010; Varela et al. 2011) since
"climate is the most important variable in reconstructing potential species distribution
because it is one important factor that limits the geographic range of different species"
(de Andrés-Herrero et al. 2018: 199).

2.2.3 Köppen–Geiger Climate Classification

A first climate-induces classification was published by Köppen (1884) followed by several
modifications (Köppen 1918; Köppen 1936). Further changes in the middle of the 20th
century culminated in the climate classification system of Köppen-Geiger (Geiger 1954;
Geiger 1961).

Source: Author’s own, based on Willmes et al. (2017)

Figure 12: Calculations of the Köppen-Geiger climate classification for the selected time slices
H5 (a), GI11 (b), and H4 (c).

An updated classification scheme of Peel et al. (2007) was applied to generate classifi-
cation maps for recent and past times based on the climate parameters temperature and
precipitation described in Chapter 2.2.2 (Willmes et al. (2017); Figure 12). Six main
groups are derived and described by the first letter. These groups are sub-divided by 12
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climate types which are described by the second and third letter, based on the combi-
nation of temperature and precipitation. As a result, 30 distinct climatic conditions can
be specified by this classification.

In all time slices the northern regions are described by the E (polar) and D (cold)
climates. The regions of the Iberian Peninsula and Morocco are characterized by D, C
(temperate), and B (arid) climates. The A climates (tropical) are not present in the
study area. The climate classification belongs to the categorical variables, since it only
accepts one status out of limited possible values per cell.

2.2.4 Gebco Data

The 2014 version of GEBCO (General Bathymetric Chart of the Oceans 2014) was used
to create a set of topographic data to represent the different sea levels of the individual
time slices. GEBCO_2014 contains authoritative data of the most recent digital bathy-
metric model of ocean floors worldwide. According to Weatherall et al. (2015), the
bathymetric dataset was merged with topographic data to create a continuous terrain
model. As source for land areas digital terrain models of the Shuttle Radar Topography
Mission (SRTM30) from U.S. National Aeronautics and Space Administration (NASA)
(Farr et al. 2007) were selected. Any depth inconsistencies that could result from ver-
tical reference differences are rather minor, considering the coarse grid resolution of the
dataset of 30 arc-seconds.

Several institutions have contributed to the overall dataset. Weatherall et al. (2015)
list the type of contributors:

• bathymetry surveys over continental shelves

• regional seafloor mapping contributions

• bathymetric data provided in the form of soundings

• multibeam data

• crowd-sourced bathymetry collected by fishery vessels

• satellite altimetry data

Topographical data south of 64◦N and north of 60◦S, as already mentioned, results from
version 2.0 of the SRTM30 elevation model, while areas of ocean floor that could not
be captured by the aforementioned contributors were interpolated by satellite-derived
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gravity data. Smith & Sandwell (1997) and Sandwell et al. (2003) consider satellite
ocean floor mapping as an advantage due to their relatively higher speed and low cost
compared to the detection by ships. The sea surface has broad elevations and depressions
that can reflect the topography of the ocean floor. Features like seamounts have minor
affects on gravity but can trigger tiny variations in ocean surface height. These variations
can be mapped with very accurate radar altimeter attached to satellites and compared
to the theoretical ocean surface.

The land surface is mapped with data from the images of NASA’s SRTM data (Farr
et al. 2007). Regions outside the United States of America are released originally with a
3 arc-second sampling (Jet Propulsion Laboratory 2018). For processing in the GEBCO
data these recordings were resampled to a resolution of 30 arc-seconds (Weatherall
et al. 2015).

Table 3: Overview of the δ18O values in per mill
(Lisiecki & Raymo 2005) in the time slices
determined by Hemming (2004) and Rasmussen
et al. (2014) and the corresponding difference to the
current sea level in meters according to Rohling
et al. (2014)
Time slice δ18O Sea level kya
H4 4.41 -103 38
GI11 4.46 -69 43
H5 4.38 -53 47

The dataset must be edited individu-
ally for each time slice to get a feasi-
ble Digital Elevation Model (DEM).
Using the Raster Calculator with
QGIS Geographic Information System
(QGIS) Software in version 3.2 (QGIS
Development Team 2018), a mask
is first created from the GEBCO
dataset to specify the regions of land-
mass and sea surface. Using the ben-

thic δ18O values by Lisiecki & Raymo (2005) of each time slice, the sea level can be
determined according to Rohling et al. (2014).

The δ18O value is a measure of the ratio of the stable oxygen isotopes 18O and 16O in
per mill. First, Urey et al. (1951) and Epstein et al. (1953) developed a method to
use oxygen isotope composition of calcite as paleothermometer. Emiliani (1955) used
oxygen isotope paleothermoetry as a proxy to reconstruct the glacial and interglacial
alterations in climate of the Late Pleistocene through foraminifera shells from deep-sea
sediments. As a result, he introduced the Marine Isotope Stages (MIS). The selected
time slices are classified in MIS 3 and thus correspond with the Weichselian glaciation in
northern Europe and Würm in the Alpine region (Svendsen et al. 2004). Benthic 18O is
determined by isotopic equilibration of CO2 gas with seawater at a constant temperature
as originally conducted by Epstein & Mayeda (1953). Then, a delta (δ) value is derived
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from the difference in the ratio of a sample value compared to the standard (Ravelo &
Hillaire-Marcel 2007).

The relative sea level in Table 3 of the Strait of Gibraltar was calculated on the basis
of Rohling et al. (2014). Here, the difference of the δ18O measured at planktonic
foraminiferal species Globigerinoides ruber with the present value is required. This
MEDSTACK by Wang et al. (2010) is used to determine the difference of the δ18O
values (H5: 1.02, GI11: 1.34, H4: 2.06).

y = −54.33006067x + 2.144129497x2 (1)

In Equation 1, x is the difference of the δ18O values and y indicates the relative sea level
of the selected state. These computed values of the relative sea levels were used for the
masks.

While land areas in the mask are given the value one, sea surface is marked with zero.
Using the respective masks, the Raster Calculator generates a DEM from the GEBCO
dataset by multiplying all values from the GebCo dataset corresponding to a landmass
by one while setting all other values to zero (Figure 13). From the results, a slope and
aspect record were additionally derived using the Geographic Resources Analysis Sup-
port System (GRASS GIS) Software in version 7.4 by GRASS Development Team
(2018). A 3x3 neighborhood around each cell in the raster elevation map is used to
determine slope and aspect. Therefore, a determination of the cells at the edges is not
possible and these cells are assigned to zero in both the slope and the aspect (Shapiro
& Waupotitsch 2015).

GebCo data has been used in numerous projects about species distribution modeling
creating a selection of environmental grids to represent conditions at the recent seafloor
and land topography, among others Vierod et al. (2014), Becker et al. (2016), and
de Andrés-Herrero et al. (2018).

2.2.5 Terrain Surface Classification Data

The creation of terrain surface classification follows the approach of Iwahashi & Pike
(2007). Here, the topography represented by DEMs is automatically classified into
eight to 16 terrain types (Table 4). For this purpose, morphometric derivations of the
geometric values of the gradient slope, local convexity, and surface texture are used. An
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Source: Author’s own

Figure 13: DEMs of the selected time slices H5 (a), GI11 (b), and H4 (c).

unsupervised nested-means-algorithm generates the categories by sequentially combining
binarized grayscale raster files of the three variables. The thresholds for the subdivision

Table 4: Surface geometry and the corresponding
terrain classes according to Iwahashi & Pike
(2007)
Surface geometry Terrain Classes
fine texture,
high convexity

1 5 9 13

fine texture,
low convexity

3 7 11 15

coarse texture,
high convexity

2 6 10 14

coarse texture,
low convexity

4 8 12 16

steep ←→ gentle

of the images are randomly set to the
mean values of frequency distributions
of the input variables to ensure sta-
tistically strong classes. While slope
and texture can support in the de-
tection of mountains, the convexity of
the surface is helpful in differentiat-
ing between low-reliefs as alluvial fans,
flood plains, and river terraces. These
data are used to classify other ter-
rain parameters such as geomorpho-
metrically determined information on
landforms and terrain types, divided
into classes. These values of the ter-
rain surface classification, in addition

to the bioclimatic and topographic values, are assigned to the characteristics of the in-
dividual finding spots of the species. So far, the usage of terrain surface classification
has not been documented in species distribution modeling.
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The dataset is derived through the tool Terrain surface classification from the System for
Automated Geoscientific Analyses (SAGA) by Conrad et al. (2015) which is delivered
with the current version of QGIS. This tool is included in the morphometry subfolder for
Terrain Analysis and the DEM is required as input variable. Other optional parameters
can be slope, convexity and texture. Without specification by the user, these are au-
tomatically generated and applied when creating the Terrain surface classification. As
provided by Iwahashi & Pike (2007), the result for 16 classes is generated in a four-
neighborhood setting, so there is no data at the edges. For each time slice, a raster file is
created from the previously generated DEM. The results for all time slices are mapped
in Figure 14. By limiting the amount of classes to 16, this variable is also classified as
categorical.

Source: Author’s own

Figure 14: Visualization of the terrain surface classification for the selected time slices H5 (a),
GI11 (b), and H4 (c). Legend in Table 4.

2.3 Implementations with R

2.3.1 Gathering Relevant Data

The following section describes the four major sections of the model used to determine
the distribution of the eight selected paleofauna species in the Western Mediterranean
of the time slices H5, GI11 and H4. The process within the model is based on the basics
of SDM by Elith & Leathwick (2009a) in general and on Hijmans & Elith (2017)
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in detail, as shown in Figure 16. The collection and preparation of the data mentioned
in chapter 2.2 is to start out on every modeling process. By complying with the applied
specifications, the data on the species or environmental data as well as on the other
predictor variables (for example, the climate status of past time slices) can easily be
exchanged. In the model, the prepared finding spots of the selected species are imported
first (Listing 3), e.g. those of the Capra pyrenaica as shown in Figure 15.

Listing 3: Import of the csv file to the species finding spots

1 file <- "Capra_ pyrenaica .csv"
2 species .data <- read.table(file , header = TRUE , sep = ";")

Source: Author’s owniNaturalist.org (2018g)

Figure 15: Extract of the first finding
spots to Capra pyrenaica and
formatted for import.

In a next step, called the data cleaning, finding
spots must be checked for plausibility and accuracy.
This step is necessary for all data to avoid incorrect
data during import. In particular, this step is im-
portant in order to prepare data from an external
database. In addition to the accuracy, the struc-
ture of the external data can also be checked (Hi-
jmans & Elith 2017). Furthermore, duplicates
that can result from multiple entries of an observa-
tion, are removed in this step. For the purposes of
this model, any finding spots that are falsely refer-
enced to water surfaces will be removed. The re-
sulting record will be referred to as species.clean

in the following code listings. Subsequent subsam-
pling on the cleaned finding spots corrects any bias (Listing 4), as these are often present
in observational data. They might result from differences in the likelihood of finding one
species in comparison to another species. In addition, differences in frequency or certain
preferences in observation for a particular species, due to a particular expected feature or
need for specific research, may lead to biases in different forms (Hijmans et al. 2001).

Listing 4: Removing bias in occurrence data through sampling

1 grid_ resolution <- 1
2 r <- raster ( species .clean)
3 res(r) <- grid_ resolution
4 r <- extend (r, extent (r)+1)
5 species .sampl <- gridSample ( species .clean , r, n=1)
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It must be pointed out that subsampling reduces the number of available finding spots
and that regions which have not been sampled before, can not be corrected. On the
other hand, it has to be considered that a local density of the finding spots can actually
be a true reflection of the relative suitable habitat (Hijmans & Elith 2017). For this
reason, no subsampling of a possible bias for Rangifer tarandus was carried out because
today’s habitat in the extended study area is restricted to the northernmost regions only.
Furthermore, the recent distribution of Rupicapra pyrenaica is limited to the region of
the Pyrenees and was also modeled without the removal of any bias.

The environmental data are imported as a description of the environment. These include
the bioclimatic variables, the climate classification, the DEM, the slope and aspect and
the terrain surface classification data. These data are stacked as predictor variables for
the present time and the time slice to be modeled.

Source: Author’s own, based on Elith & Leathwick (2009b)

Figure 16: The main sections of the model to determine the distribution of the selected species.
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Many of the first methods only use presence-only data. More modern methods use
presence/absence data (Table 5). But even if only presence-only data are available,
as in this work, they can be processed in methods for presence and absence data by
substituting missing absence data with background data. This background data are
not intended to estimate potential absence locations, but rather to characterize the
selected environments at those points in the study region. Through this concept of
pseudo-absence data, a description of the study region is obtained, while the presence
data describe under which conditions the species is more present than on average. The
function randomPoints provided in Listing 5 generates 1000 random points within the
specified extent that will be used henceforth as background data. The predictors stack
is used as a mask, which allows generating the background points only in areas on land.
In the following, the random points are divided into 800 points (80%) for training and
200 points (20%) for testing. The allocation is done randomly by the function kfold,
whereby each record in a matrix is randomly assigned to a group whose number ranges
between 1 and k (Hijmans & Elith 2017). In this case, 5 groups were created.

Listing 5: Generating random points as background data based on a mask and a partitioning
into test and training dataset. A pair-wise distance sampling is done due to spatial sorting bias
in the training data

1 backg <- randomPoints ( predictors _recent , n=1000 , ext=ext)
2 colnames (backg) = c( ’lon ’ , ’lat ’ )
3 group <- kfold(backg , 5)
4 backg_train <- backg[group != 1, ]
5 backg_test <- backg[group == 1, ]
6 sb <- ssb(pres_test , backg_test , pres_train)
7 sb
8 ssb_res <- sb[,1] / sb[,2]
9 ssb_res

10 i <- pwdSample (pres_test , backg_test , pres_train , lonlat =TRUE , n
=1, tr =0.1 , warn = TRUE)

11 pres_test_pwd <- pres_test[!is.na(i[ ,1]) , ]
12 backg_test_pwd <- backg_test[na.omit(i), ]

Since there is often a bias in these data, too, it must be removed in order to use them
in the following steps. After generating background points, the presence data is divided
into two random groups, a training and a test set. Hijmans (2012) suggests a removal of
the spatial sorting bias (SSB) through a pair-wise distance sampling (Listing 5). This is
done with a measuring on the difference between a testing dataset and training dataset in
the average distance to the nearest point in a reference training dataset. If the indicator
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of SSB is close to zero, there is an SSB in the data. A value near to one indicates no
SSB (Hijmans & Elith 2017). Due to lack of finding spots for the individual time slices
from H4, GI11 and H5, only evaluations of these test and training data of a species from
the respective method can be delivered and analyzed.

Table 5: Data requirements for the methods used in
this work
Method required data
Bioclim presence-only
GLM presence/(pseudo-)absence
MaxEnt presence-only

With the package dismo (Hijmans &
Elith 2017), which is used in this
work, the specific environment values
at the presence and background points
do not have to be determined manu-
ally, since this is done automatically
by the provided methods. Further-
more, the methods provided by dismo

do not use a formula for fitting. Only the regression methods require a fitting by formula
in order to identify the dependent and independent variables of the predictor variables
(Hijmans & Elith 2017). To solve a potential problem with multicollinearity, there
are two approaches. The package usdm (Naimi et al. 2014) provides tools to analyze
uncertainty in SDM. The package dismo allows only a visual check for multicollinearity.
This is why the function vifstep of usdm is used to identify dependent variables from
the predictor stack that have a multicollinearity. Using predictor variables in which
multicollinearity exists, can cause instability, especially in the regression-type methods
(Naimi et al. 2014). Multicollinearity is described by Alin (2010) as the condition
where two or more predictor variables in a statistical model are linearly related. Twelve
of the 19 bioclimatic input variables have a multicollinearity problem (bio5, bio10, bio11,
bio16, bio7, bio12, bio17, bio1, bio2, bio18, bio13, bio9) and should not be used from
a statistical point of view. This was determined by the variance inflation factor (VIF),
which can be derived as shown in Equation 2.

1/(1− r2
i ) (2)

The coefficient of determination on all remaining variables for the ith variable is de-
scribed through r2

i . All results with a VIF greater than ten indicates variance more than
ten times as large as in the case of orthogonal predictors (Belsley 1991). Without a
deeper ecological understanding, it will not be possible to separate collinear variables by
statistical means. (Dormann et al. 2013). Thus, as a second approach, Dormann et al.
(2013) suggest a general rule, to use those variables that are ecologically relevant, feasible
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to collect data on, and are closest to the source of the sequence resource-direct-indirect-
proxy. Beaumont et al. (2016) identified eight bioclimatic variables, that were selected
because of their influence on both physiological and distributional limits of vertebrates
(Table 6). In this selection of bioclimatic variables a multicollinearity is also recogniz-
able, but these are the ecologically meaningful predictors. Furthermore, this provides a
common set of variables to build consistency between models and support direct com-
parisons (Beaumont et al. 2016). Therefore, these selected bioclimatic variables are
used for the further course of action.

Table 6: Bioclimatic variables and their VIF used for modeling
Bioclimatic variable VIF

Annual Mean Temperature (bio1) 118.8
Temperature Seasonality (bio4) 9.4
Max Temperature of Warmest Month (bio5) 63.3
Min Temperature of Coldest Month (bio6) 29.0
Annual Precipitation (bio12) 131.7
Precipitation Seasonality (bio15) 6.4
Precipitation of Wettest Month (bio13) 68.0
Precipitation of Driest Month (bio14) 22.0

For the SDM of a species,
a variety of statistical and
mathematical techniques
can be used, all designed
with one goal in mind:
to correlate data about
the observed distribution
of a species with a set
of spatially defined vari-
ables. Usually, these are
variables that define the
environment (Guisan &

Zimmermann 2000; Franklin 2010). There is still ambiguity in the classification
of the individual methods in literature. In this work, the classification of the modeling
methods provided by Hijmans & Elith (2017) is used.

2.3.2 Selecting a Modeling Algorithm and Fitting of the Model

2.3.2.1 Profile Methods

Bioclim is used as an exemplary method for profile methods, because it is integrated
in the package dismo. In addition, the methods Domain and Mahalanobis are provided
in this package, though Bioclim is one of the extensively used methods in SDM and a
classic climate-envelope-model (Booth et al. 2014).

Nix (1986) produced the first version of the Bioclim package as the growing desire came
up to generate maps of a multi-dimensional environmental space in which a species
may potentially occur. This environmental space is constructed as a kind of bounding
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box around the minimum and maximum values of the environmental variables for all
occurrences of the species, resulting in a so-called multi-dimensional rectilinear envelope.
It has been developed to model species distributions in relation to climatic variables
(Figure 17). This assumes that species occurrence is influenced by climate. Categorical
variables (such as climate classification and terrain surface classification) can not be
processed and must be removed from the predictor variables (Listing 6) before applying
the model (Hijmans & Elith 2017).

Listing 6: Removal of the categorical variables from recent and past predictor stacks

1 pred_nf <- dropLayer ( predictors _recent , " iwahashi ")
2 pred_nf <- dropLayer (pred_nf , "KG")
3 pred_nf_past <- dropLayer (predictors , " iwahashi ")
4 pred_nf_past <- dropLayer (pred_nf_past , "KG")

The algorithm set up here calculates the similarity of a location by comparing the values
of environmental variables at any given location in the study area with a percentile
distribution of the values at known locations of occurrence, the training sites (Figure
17). The closer the value reaches the 50th percentile, which is the median, the more
convenient the location is and the higher the probability of occurrence. Since the tails
of the distribution will not be differentiated, the 10th percentile is treated equally as
the 90th percentile. The scores for each environmental variable are combined to a total
probability of occurrence for each site with equal weights for all environment variables
(Araújo & Guisan 2006; Booth et al. 2014; Hijmans & Elith 2017).

Hijmans et al. (2017) integrated a transformation of the percentile in the dismo package
to generate a result that is alike the results of other SDM methods and should therefore
be easier to interpret. Usually percentile scores range between zero and one, but here
predicted values greater than 0.5 are subtracted from one. Then, the minimum percentile
score is calculated across all environmental variables. The final value is subtracted from
one and multiplied by two so that all results range between zero and one.

Listing 7: Fitting the environment variables and predicting the potential distribution with
Bioclim

1 bc <- bioclim (pred_nf , pres_train)
2 pb <- predict (pred_nf_past , bc , ext=ra_ext)
3 e <- evaluate (pres_test_pwd , back_test_pwd , bc , pred_nf)

The function in Listing 7 calls the fitting of the environmental data for Bioclim. The
values from the predictor variables at the training data do not have to be extracted man-
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Source: Author’s own

Figure 17: Fitting of a Bioclim model using the predictors (green) and the occurrence points
(black), reduced to a specified percentile (red) to avoid overpredictive effect of outliers.

ually, as this procedure is taken by Bioclim. The resulting object of class Bioclim (bc)
is passed to the function predict. Further parameters are the environmental variables
of the time slice for which a prediction should be made and the extent that should be
applied in the resulting raster file. The evaluate function provides a cross-validation
of the models. Presence points, background points, and the model object are passed a
parameter to the function.

2.3.2.2 Regression Methods

There are two approaches that can be used for the methods that are based on regression:
the Generalized Regression Models (GLM) and the Generalized Additive Models (GAM).
The GLM used in this work is a generalization of the simple linear ordinary least squares
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regression models to predict the response variable as a function of multiple predictor
variables (Hijmans & Elith 2017). Linear regression models assume that a straight line
can be used to describe the relationship between the response and predictor variables
and a constant change of a predictor leads to a constant change of the response variable.
In ecological data, however, this assumption is often violated, which is why these models
are extended into the methods called GLMs. Thereafter, the regression models can deal
with not normally distributed data (Guisan et al. 2002).

Source: Author’s own

Figure 18: Relationship between
predictor data and presence/absence
data with a link function for binomial
data.

The GLMs, which find the best performing equa-
tion that predicts the possible occurrence of a se-
lected species based on the values of the environ-
mental variables, consist of three important com-
ponents: the response variable, the combination
of continuous predictor variables to represent the
environmental suitability and the link function to
describe how the mean of the response depends on
the linear predictor (Listing 8). The link function
provides a transformation of the response, because
the relationship between the linear predictors and
the response is not linear (Hastie & Tibshirani
1990).

Since binomial GLMs have to get fitted with pres-
ence and absence or background data, logistic re-
gression (logit) is used (Hijmans & Elith 2017).
This is the logarithm of the ratio of probability of
presence to the probability of absence (Figure 18). The coefficient can be used to deter-
mine the influence of a predictor variable on the potential distribution of a species.

Listing 8: Fitting the environment variables and predict the potential distribution with GLM

1 gm1 <- glm(pa ~ bio1 + bio4 + bio5 + bio6 + bio12 + bio15 + bio13
+ bio14 + GebCo_TB_ext + GebCo_TB_ext_slope + GebCo_TB_ext_
aspect , family = binomial (link = "logit"), data= envtrain )

2 pg <- predict (predictors , gm1 , ext=ra_ext)
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2.3.2.3 Machine Learning Methods

Algorithmic modeling applications are known as machine learning. Their application and
development has increased enormously in the past few years (Breiman 2001). MaxEnt
(Phillips et al. 2006) is the most widely used method in species distribution modeling
(Hijmans & Elith 2017). As a machine learning method MaxEnt iteratively builds
multiple models to get predictions or inferences from incomplete information. The aim
is to determine a target likelihood suitability by determining the probability distribution
of maximum entropy. This includes those distributions that are the most spread out or
those who are closest to uniform. The results can only be interpreted as a relative index
of environmental suitability rather than predicted probability of occurrence (Phillips
et al. 2006). MaxEnt in version 3.4.1 is provided by Phillips et al. (2017) and can be
addressed via the dismo package (Listing 9).

Listing 9: Fitting the environment variables and predict the suitable environment with MaxEnt

1 xm <- maxent ( predictors _recent , pres_train , factors =c(" iwahashi ",
"KG"), path=".")

2 px <- predict (predictors , xm , ext=ra_ext , progress ="")

MaxEnt uses only presence data. The algorithm compares the locations where one
species exists with all other environments available in the study region. The available
environment is defined by sampling a large number of points throughout the study area.
In MaxEnt these points are called background points and not pseudo-absence, because
they can include locations where the species is known to occur (Phillips et al. 2006).

Phillips et al. (2006) described two important components of the method: a) Entropy,
to find the distributions as described above, and b) Constraints, the rules that set the
limits to the predicted distributions. They are based on the values of the environmental
variables, which in this case are also called features, where the occurrence of a species
was observed. By default, MaxEnt allows five types of features, but only two are used
in this work (Table 7).

In order to determine the possible distribution of a species, MaxEnt first calculates two
probability densities. On the one hand, a probability density is calculated for all presence
locations in order to determine the relative likelihood of all features over the range of
those points. On the other hand, a probability density is calculated across the entire
region. These values are based on the background points.
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Table 7: MaxEnt feature types used for the modeling as described by Phillips et al. (2006)
Feature type Category Constraint
Linear Continuous variable (bio1,

bio4, bio5, bio6, bio12,
bio13, bio14, bio15, slope,
aspect)

The mean of the
environmental variables
should be close to their
observed value in known
occurrence locations

Categorical Categorical variable
(iwahashi, KG)

The proportion of
predicted values in each
category should be close
to the observed
proportion

Thus, the probability of density of the background points describes the available en-
vironment within the study region. The probability of density of the presence points
describes the respective environment where a species occurs. Subsequently, MaxEnt de-
termines the ratio between these two probability densities. This indicates the relative
environmental suitability for the occurrence of a species for each point in the study area.
To ward off overfitting, MaxEnt uses the strategy of relaxing the constraints. The model
does not use the exact constraints of the environmental variables, but rather intervals
around the constraints (Phillips et al. 2006).

2.3.3 Evaluating the Model

In order to obtain a good prediction from the models, one can analyze whether the
result makes sense from an ecological point of view. On the other hand, a value can
be determined via a statistical analysis. For this purpose, Hijmans & Elith (2017)
proposed to generate two further datasets from the cleaned finding spots: a training and
a test dataset (Listing 5).

The most common statistic obtained by the evaluation are plots of the Receiver Operat-
ing Characteristics (ROC). These characteristics are derived from the confusion matrix.
It refers to a matrix whose rows summarize the predicted presence and absence, and the
columns state the true observed presence and absence status. The respective values in
this matrix are specific to individual cells of the model. Cells of an observed distribution
where the model predicts absence are called omission error. Cells in which the species is
unknown but predicted as present, indicate the commission error. These values are used
to express the sensitivity and specificity of a model, where sensitivity is indicated by 1
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– (omission error rate) and specificity equals 1 – (commission error rate). The ROC
plots use these characteristics to allow an evaluation of the model. Here, the sensitivity
on the y axis is plotted against 1 – specificity on the x axis. The two resulting rates are
plotted over the series of all predictive values as single points which are connected to
form a curve (Peterson et al. 2011).

The resulting Area Under the Receiver Operator Curve (AUROC), or commonly abbrevi-
ated as AUC, is a measure of rank-correlation to represent the performance of the model.
The AUC values range between zero and one and indicate the ability to rank presence
locations higher than a sample of random background data or (pseudo-)absence data
(Peterson et al. 2011). It should be noted that AUCs are generally not comparable
among species, because different species potential distributions will cover different areas
of a study region. But according to Phillips et al. (2006), it is possible to use this eval-
uation method in most situations for a model comparison with true presence/absence
data.

An AUC value in presence/absence data of 0.5 or below indicates an untrustworthy
prediction (Hijmans & Elith 2017). AUC values above 0.5 are ranked by Swets
(1988) into poor predictions (0.5 to 0.7), reasonable predictions (0.7 to 0.9) and very
good predictions (above 0.9). But these guidelines are not always relevant for ROC plots
which are based on presence/background data. The maximum achievable AUC value in
this type of data depends on the occurrence of the species and its potential distribution
within the study region. This means presence/background AUCs are species- and region
specific, but can be used in comparison of performance between different environmental
datasets, as it is the case in this work (Peterson et al. 2011).

Furthermore, the AUC can also be used in the evaluation of training and test data. This
will always be in reference to the recent environment and finding spots of the species
within a specific modeling method. After that, according to Hijmans & Elith (2017),
a comparison of the AUC of the test and training data for fitting the model can be
performed. The basis is an approach by Elith et al. (2006) which connects the AUC
with the correlation (COR). The correlation between test and training data in the model
fitting is calculated as the Pearson correlation coefficient and provided by the function
evaluate of the package dismo. Since a comparison may only be applied between species
with removed spatial sorting bias (Hijmans 2012), the results from Rangifer tarandus
and Rupicapra pyrenaica are excluded for determining the potentially best performing
method.
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2.3.4 Selecting a Threshold

Another important setting is the threshold. All modeling methods used in this work
produce a continuous surface output as a result. Peterson et al. (2011) suggest to
convert continuous model predictions to binary ones. This can be resolved by choosing
a threshold value at or above the environment that is predicted as suitable for the
selected species. Therefore, the setting of the threshold is determined mainly by the
reason of applying the model. The simplest, but also subjective, method is to select
a random value, such as 0.5 for a continuous output that ranges from zero to one.
In addition, this value cannot be related to the species’ ecological requirements and
lead to misinterpretations. The more objective methods applied to each continuous
output algorithm are often based on criteria applied during model calibration. It must
be distinguished whether it is presence/absence or presence-only data that is imported
into the model. In the former case, the threshold of maximizing the sum of sensitivity
and specificity has proved to be the best performing one (Liu et al. 2005). Also for
models with presence-only data, this value can be used when working with randomly
generated background values if needed (Liu et al. 2016). The threshold is generated
in the evaluation object and can be addressed with the function threshold and option
spec_sens in the package dismo.
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3.1 Maps

One of the last points from Figure 16 is the mapping of the previously threshold defined
predictions to the geographic space. Geographic space is considered as the study area
of the Iberian Peninsula and Morocco. The maps were created with QGIS by importing
the raster files generated from the individual methods. Subsequently, the presence and
absence cells are differentiated by colors. For each time slice, the results of the individual
methods are displayed side by side. Not all 72 distribution maps are depicted in this
work, but all prepared maps and the original exported results can be downloaded as
supplementary data from the CRC 806 Database (Holthausen 2018). The reference
to the respective supplementary data is noted at the first mention of the species (A-H).
All maps and results represent the potential distribution or suitable area of the species
predicted by the respective methods, based on the previously described settings and
environmental variables.

Rangifer tarandus (A1-3, Figure 19)

The predictrions for Rangifer tarandus vary greatly between the individual methods.
Bioclim shows a dispersion mainly in higher regions of the Iberian System and Cantabrian
Range during H5 and only very minor changes in comparison to GI11 and H4. An oc-
currence in Morocco is not specified and the predicted regions for distribution do not
change over time. The predictions of GLM also differ only very marginally over the
three time slices. A distribution deviating from Bioclim is given for central regions of
the Iberian Peninsula, in particular the Inner Plateau and the Pyrenees show a broad
presence. In Morocco, distribution is indicated within central regions of the High and
Middle Atlas. MaxEnt does not provide suitable areas for the regions in the Iberian
Peninsula and Morocco based on the imported predictors and selected threshold for all
time slices.
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Source: Author’s own

Figure 19: All result maps to Rangifer tarandus. Green areas indicate a presence or suitable
area and gray indicates a predicted absence of the species.

Figure 19 shows very different predictions between the methods, but similar distributions
across the time slices. In the result of MaxEnt, it should be noted that there were no
reference points for the study region in the test and training data available and the
display is dependent on the selected threshold. The raw values (Holthausen 2018)
show across all time slices a very small potential suitable area in the region of the
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Pyrenees, similar to GLM. Nevertheless, the AUC values of these predictions (Table 8)
are similar high in all predictions, as no sampling has been performed here.

Bos taurus (B1-3)

There are a few more similarities among the methods for Bos taurus. Bioclim predicts
a dispersal during the H5 only along the foots of the Pyrenees. There are only very
few changes to GI11, as well as between GI11 and H4. The predicted regions remain
unchanged over all time slices. There is never any mention of a distribution in Morocco.
GLM deviates from Bioclim predictions and indicates a distribution only in a small region
in the northwest of the Iberian Peninsula. Over the three time slices there are only very
minor changes, whereby the regions of predicted distribution remain the same. A possible
distribution in Morocco is also stated here at no time. MaxEnt shows some overlaps with
the Bioclim results, especially in the Pyrenees and at the border of today’s Spain and
France. Additional suitable regions are indicated at the coast to the Mediterranean Sea
in some southeastern regions and the complete coast to the Atlantic Ocean in the north.
In Morocco, some suitable areas are specified within the Atlas range. Between H5 and
GI11 there are only minor changes. Whereas at H4 almost the entire northern half of the
Iberian Peninsula is stated to be suitable. In Morocco suitable areas accrued especially
from the coast of the Mediterranean Sea to the ranges of the Middle Atlas.

Capra pyrenaica (C1-3, Figure 20)

The distribution of Capra pyrenaica during H5 is indicated by Bioclim with the north-
western Inner Plateau and the adjoining Cantabrian Range as well as in the southeastern
Iberian Peninsula from the tails of the Pyrenees across the Iberian System to the Baetic
System. In Morocco, the region of the Middle Atlas in particular is characterized as
presence. With the transition to GI11 only small changes become visible. Also for
H5 only minor changes in the dispersal of the projected regions are recognizable. The
predicted distribution rarely changes over the time. GLM, however, predicts in H5 a
distribution mainly in the extreme northwest and southwest, as well as in the area of
the Strait of Gibraltar. Only a few occurrences are forecasted in the area of the Central
System and the Iberian System. Compared to GI11, there are only very few changes
and the projected distribution remains the same. The locally predicted distribution is
slightly reduced, but there are no changes in the extent. In transition to H4, the locally
predicted density of the distribution decreases slightly, but there are no changes in the
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extent. MaxEnt predicts suitability for the southeastern regions of the Iberian Penin-
sula, especially in the mountainous regions of the Baetic and Iberian system as well as
the Cantabrian Range in the north. Only a few regions are indicated as suitable in the
Pyrenees. In Morocco, distribution is limited to the regions of the High Atlas, Anti-
Atlas, and Middle Atlas. There is minor change in distribution across all time slices.
The extent predicted as suitable does not change.

Source: Author’s own

Figure 20: All result maps to Capra pyrenaica. Green areas indicate a presence or suitable area
and gray indicates a predicted absence of the species.
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The few overlaps of completely different predicted regions can be seen in Figure 20.
The AUC values (Table 8) are in a similar value range for MaxEnt and GLM, only
Bioclim is in the range below 0.5, although the results show the greatest similarities
with MaxEnt.

Rupicapra pyrenaica (D1-3)

As a possible distribution of Rupicapra pyrenaica Bioclim specifies the Cantabrian Range
in the north of the Iberian Peninsula and the Pyrenees. Excluded are the high-altitude
regions of the Pyrenees. Seen over all three time slices, there are only very minor changes
in the prediction, the northern mountain regions represent the favor zone. In the change
of time slices, differences in the distribution region occur only very occasionally. In
Morocco no distribution is indicated. However, GLM predicts the high-altitude mountain
areas of the Pyrenees that were left out at Bioclim. There is an overlap in the eastern part
of the Cantabrian Range, and in addition the most northwesterly region of the Iberian
Peninsula appears to be a potential habitat in H5. In Morocco, only a few regions in
the northern Rif and the eastern tails of High Atlas are specified for distribution. In
transition to GI11 and H4, there are no significant changes in the distribution. In H5,
the prediction from MaxEnt to Bioclim differs only slightly, with no suitable areas for
the region between the Cantabrian Range and the Pyrenees. No major change in the
suitable regions can be seen in the transition to the time slices GI11 and H5. Like
Bioclim, MaxEnt predicts no suitable regions in Morocco.

Capreolus capreolus (E1-3)

Capreolus capreolus has a distribution predicted by Bioclim in the northern regions of
the Iberian Peninsula. In particular, these include the Cantabrian Range, the Iberian
System and the Pyrenees, except the high-altitude regions. For H5, no presence is
predicted in Morocco. In transition to GI11, there are no significant changes in the
distribution. During H4 the distribution in the south is reduced and only the northerly
and less high-altitude areas of the Cantabrian Range and the Pyrenees are included in
the distribution area. An overlap of the distribution from GLM to Bioclim exists only
in the northwest and a small region in the Pyrenees. In addition, GLM specifies for H5
and GI11 a potential occurrence in the south of the Iberian Peninsula and in northern
Morocco at the Strait of Gibraltar. This distribution prediction also applies to the H4,
where the density decreases in the western regions and decreases slightly in the Pyrenees.
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MaxEnt has high compliance with Bioclim for suitability in H5, although the potential
habitats are less dense and focus on coastal regions in the north on the Atlantic Ocean
and northeast on the coast of the Mediterranean See. There are no major differences
between H5 and GI11, but H4 has increased suitability in the south, especially along the
coasts to the Atlantic Ocean and the Mediterranean Sea.

Cervus elaphus (F1-3)

Bioclim predicts a distribution of Cervus elaphus in H5 across almost the entire Iberian
Peninsula. Excluded are large areas in the southwest and northwest of the peninsula,
as well as the Pyrenees. In Morocco, regions in the southwestern Anti-Atlas, the north-
eastern Middle Atlas and the Rif Range are indicated as presence in the distribution.
With transition to GI11, the distribution regions are changing as they shrink slightly
and open up some gaps in the whole area. Whereas in H4, the distribution regions
expand again and close the gaps. Changes in distribution within Morocco are minimal.
GLM, on the other hand, predicts distribution, especially in the northwest of the Iberian
Peninsula. In addition, some areas in the Cantabrian Range, the Central System and
the Northern Iberian System are identified as potential habitats. In Morocco, Cervus
elaphus is characterized as being present during H5 only in northern Rif Range. There
are very few changes in the distribution at transition to GI11, both in the Iberian Penin-
sula and in Morocco. A similar situation occurs in transition to H4, except that the
number of potential habitats decreases and the size of the predicted region shrinks. The
result from MaxEnt has a greater similarity with GLM to the possible distribution area
compared with Bioclim. In H5, a possible distribution is predicted in the Cantabrian
Range and the entire northern coastal strip. In addition, a distribution is indicated
along the foothills of the Pyrenees to the Mediterranean Sea. From there, the potential
distribution area extends to the present Costa Blanca in the south. Furthermore, there
are possible regions of Cervus elaphus on the coastal strip in the northwestern part of
the Iberian Peninsula. In Morocco, the distribution is limited mainly to the foothills of
the High Atlas to the coast of the Atlantic Ocean. In GI11, the potential distribution
expands into the interior, especially in the north of the Iberian Peninsula. Here, the
potential distribution area extends into the Inner Plateau north of the Central System.
In H4 an expansion takes place into the south again. The entire coast from today’s Lis-
bon to the north and the entire coast of the Atlantic Ocean in the north of the Iberian
Peninsula are considered as possible habitats. Inland, the distribution is predicted from
the coast of the Atlantic Ocean in the north to the Central System and the Pyrenees.
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Furthermore, the coastal strips to the Mediterranean Sea have to be considered for pres-
ence. In Morocco, the coastal strip to the Mediterranean Sea ranks among the suitable
area in this time slice.

Sus scrofa (G1-3)

The potential distribution of Sus scrofa is specified by Bioclim similar to that of Cervus
elaphus. In H5, the entire Iberian Peninsula is the preferred area, except for regions in
the northwest, southwest, and the Pyrenees. For GI11 only minor changes are visible. In
H4 the number of potential habitats is decreasing and less dense, especially in the west
of the Iberian Peninsula and Morocco. While until GI11 large areas of the Atlas Ranges
could be ranked among the potential distribution area, in H4 the area is restricted to
the Hautes Plaines in the northeast, the southeastern foothills of the High Atlas and the
transition area between Middle Atlas and the Rif Range. In H5, GLM predicts a dispersal
especially in the entire west of the Iberian Peninsula, the Central System and the Inner
Plateau, as well as in the Pyrenees. In the south, the Strait of Gibraltar is reached. This
continues in Morocco to the Middle Atlas in the south and the Rif Range in the east.
In transition to GI11, only very minor changes can be seen in the distribution. In H4,
the distribution area is decreasing slightly and more concentrated towards coastal areas.
These changes can be observed both in the Iberian Peninsula and in Morocco. MaxEnt
has a different distribution of suitable areas in H5. In particular, the northwestern part
of the Iberian Peninsula, the coast of the Atlantic Ocean in the north, and several regions
in the Cantabrian Range, the Iberian System, and the Pyrenees can be seen as suitable.
In Morocco, the area of the coast of the Mediterranean Sea and the coast of the Atlantic
Ocean can be ranked among suitable areas. Particularly mountainous regions are not
included into the suitable areas. In the change to GI11 no major changes are registered.
In H4 this changes a bit. The area of the Cantabrian Range is now a closed suitable
area with no gaps. From the west, some overlapping suitable areas are reaching into
the interior of the Iberian Peninsula. The high-altitude regions are still not included.
Morocco also has a more branched distribution of the potential suitable areas, especially
in the north. However, the coastal areas are still among the suitable areas.

Equus caballus (H1-3, Figure 21)

Equus caballus is predicted by Bioclim in H5 throughout the mountainous area of the
Iberian Peninsula. Excluded are the high-altitude regions of the Pyrenees and the north-
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ern part of the Inner Plateau. In the north and southeast, however, to the coasts of the
Atlantic Ocean and the Mediterranean Sea have to be considered as possible distribu-
tion areas. A similar picture appears in Morocco, where the distribution covers only the
regions of the High Atlas via the Middle Atlas up to the Rif Range. With transition
to GI11, there are only minor changes, which are expressed in a small increase in the
distribution to the southwest of the Iberian Peninsula. In H4, however, this expansion
is undone and the distribution is predicted very similar to H5.

The prediction in GLM for H5 differs significantly to Bioclim. Two regions are identified
as potential habitats. These include the plain regions in the northwest of the Iberian
Peninsula and the regions along the Strait of Gibraltar, both on the Iberian side and
in Morocco. For GI11, the prediction of distribution is the same as for H4. Within
the potential regions, individual units shift, but the regions themselves remain the same
in extent and location. MaxEnt contradicts these calculations and specifies for H5 a
location of suitable areas comparable to Bioclim. In addition, however, the coastal
regions in the northwest and southeast of the Iberian Peninsula are classified as suitable
areas. Morocco reveals a similar picture. In addition to the coast of the Atlantic Ocean,
the regions of the Atlas to the Strait of Gibraltar belong to the suitable areas. The only
change in GI11 is that more parts of the Inner Plateau are designated as a suitable area.
This decreases with H4 again, but the suitable area intensifies in the northern part of
the Inner Plateau. The suitable areas in Morocco show only very minor change.

As shown in Figure 21, there is a very uneven prediction, including in the range of
AUC values (Table 8). GLM has the highest value, but deviates significantly from the
other two methods, which show more similarities among each other in the potential
distribution.

3.2 Statistical Evaluation of the Methods

Table 8 shows the statistical evaluations of the methods for all species. The AUC values
from the AUROC plots between the training and the test data are listed. All data are
based on the sampled input data, only Rangifer tarandus and Rupicapra pyrenaica were
imported without any sampling. Furthermore, the correlation coefficient (COR) from the
evaluation function is indicated. Herewith, according to Elith et al. (2006), the Figure
22 can be generated from the mean values in order to visualize the meaningfulness
of the methods. In Figure 22 the lower-left portion indicates the poorly performing
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Source: Author’s own

Figure 21: All result maps to Equus caballus. Green areas indicate a presence or suitable area
and gray indicates a predicted absence of the species.

methods and in the upper-right portion the better performing methods. The mean
values used here were obtained from Table 8 and contain all COR and AUC values
across all species and all three time slices, grouped by method. As already resumed
in Elith et al. (2006), it can be concluded from these data (Table 8; Figure 22) that
the best performing method is MaxEnt which can additionally provide more in-depth
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Table 8: Statistical results of the predictions for each method and species, expressed as COR
and AUC (*The means are calculated without Rangifer tarandus and Rupicapra pyrenaica).

Bioclim GLM MaxEnt
Species COR AUC COR AUC COR AUC
Rangifer tarandus* 0.671 0.978 0.723 0.997 0.967 0.997
Bos taurus 0.200 0.548 0.460 0.776 0.223 0.604
Capra pyrenaica -0.144 0.444 0.294 0.778 0.478 0.700
Rupicapra pyrenaica* 0.608 0.990 0.818 0.995 0.944 0.999
Capreolus capreolus 0.123 0.628 0.227 0.633 0.249 0.628
Cervus elaphus 0.036 0.540 0.239 0.640 0.279 0.659
Sus scrofa 0.133 0.607 0.281 0.653 0.271 0.682
Equus caballus 0.346 0.723 0.325 0.636 0.527 0.826
Mean 0.116 0.582 0.304 0.686 0.338 0.683

answers referring to the prediction of a distribution. From a statistical point of view,
GLM is located not very distant from the MaxEnt value. Bioclim, statistically, provides
the worst performing results.

Source: Author’s own

Figure 22: Mean AUC plotted against mean correlation
(COR) for all applied modelling methods, summarized
across all species (SD = standard deviation).

The exclusion of Rangifer taran-
dus and Rupicapra pyrenaica
does not mean that they provide
false predictions. Just the inclu-
sion of these AUC values into the
determination of the potentially
best method is not permitted, as
described in Chapter 2.3.3. All
other species used had an SSB
which was removed by the pair-
wise distance sampling. Only two
of the AUC values from MaxEnt
are higher than GLM, but all are
higher than the Bioclim values.
And only one AUC from Bioclim
is higher than the respective one
at GLM. Overall, only four of the
results reach the AUC value of
0.7 or above, which would pro-
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vide a reasonable prediction on
presence/absence data: Equus caballus in Bioclim, Bos tarus in GLM, Capra pyrenaica
in GLM and MaxEnt.

Table 9 gives, in particular for the method MaxEnt, estimates of relative contribution of
selected environmental variables which have been included in the prediction. It should
be noted that the information has to be interpreted with caution, since some of the
predictor variables are correlated.

The table contains entries of a contribution above 10%, the next value below this limit
and any values that can indicate a change between the time slices. It can be seen that the
environmental variable for annual precipitation (bio12) is the dominant environmental
variable for three species (Cervus elaphus, Equus caballus, and Sus scrofa) in all three
time slices. In general, the contributions of precipitation (bio12) or its derivatives (bio13,
bio14, bio15) are always represented by more than 10%. The annual average temperature
(bio1) and its derivatives (bio4, bio5, bio6) also contribute to the calculations, but not
to the same range as the precipitation. The precipitation seasonality (bio15) plays no
role with values always below 10%. The calculations for Rangifer tarandus are the
only ones that relate 47% to the categorical variable Köppen-Geiger, which describes
the climate in general. While the DEM only affects Rupicapra pyrenaica over all three
time slices (42.7%), in the case of Capra pyrenaica in H5 and GI11 the slope is the
highest determining environmental variable. But in H4 the highest contribution changes
to the DEM (28.8%) and slope contributes only marginally with 0.4%. Sus Scrofa was
characterized by Melis et al. (2006) with a high correlation to temperature, whereas
MaxEnt shows a relatively large contribution of 60-80% of the annual precipitation
(bio12) to the distribution. The temperature (bio1) contributes only slightly to the
distribution predicted by MaxEnt. The maximum temperature of warmest month (bio5)
is the second largest contribution after the precipitation in H5 and GI11. In H4, the
percentage even drops below 1%. Terrain surface classification and the aspect contribute
only in a minor role.
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4 Discussion

Because of these values, it is difficult to decide which method represents the potentially
best one. Especially the two high AUC values for Capra pyrenaica in MaxEnt and a
slightly higher one in GLM but the completely different predicted regions for distribution
or suitability do not support the selection.

A meaningful prediction depends primarily on the quality and quantity of the occur-
rences and predictor variables used in the algorithm. Since no verifiable finding spots
assignable to the individual time slices were available for this work, the datasets of the
GBIF Secretariat (2017) were used. In general, only those points were used in which a
position was specified and categorized as living specimen and human observation. Two
potential sources of error emerged: the human observation datasets still contain oc-
casional reports of fossils, although there is a separate category for such reports. In
addition, the coordinates stored in the database have an uncertainty, which could lead
to errors in the prediction at a finer resolution.

To generate consolidated datasets for the import, the extension of the training area and
the occurrence records to almost the complete distribution area of the species, as applied
here, is recommended and often used to enhance the reliability of the prediction. The
restriction to just one part of the distribution area may lead to a very limited survey
of the environmental characteristics and thus to an underestimation of the potential
distribution (Thuiller et al. 2004). Sánchez-Fernández et al. (2011) even suggest
to include the world-wide distribution of a species into the training, or at least resorting
to a sample of populations that are distributed across the whole environmental range.
The region extended here includes almost the entire European region and thus almost
all environmental properties for the species, which are mainly distributed in Europe.

Furthermore, the approach proposed by Depraz et al. (2008), Rodriguez-Sanchez &
Arroyo (2008), Solomon et al. (2008), and Alba-Sánchez et al. (2010), and used
in this work, is not entirely free of doubts. In these studies, where the distribution of
a species was projected onto either the future or past climate, it is reported that the
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transferability between periods provided adequate results. On the other hand, Varela
et al. (2009) conducted a time transference of model predictions which reveals almost
no suitable conditions for their species, despite a widespread presence of fossil remains
in the study area during the related period of time. A similar behavior to MaxEnt for
Rangifer tarandus in this work, which has been identified as present in the northern parts
of the Iberian Peninsula at this time (Álvarez-Lao & García 2010). Additionally, as
a result, no evaluation of the temporal transference can be performed, just on the basis
of the presence data respectively test and training data.

The use of WorldClim’s 19 bioclimatic variables (Hijmans et al. 2005) is mainly due to
its easy availability, making it one of the most commonly used predictors (Varela et al.
2011). This means that the average annual temperature and the annual precipitation or
their derivatives are used in most methods for calculating potential distribution. The
resulting multicollinearity can be counteracted by determining the VIF in the predictor
variables by removing those variables from the predictor stack as described in Chapter
2.3.1. This purely statistical approach is opposed by the ecological approach, which
proposes keeping a predictor variable if it is ecologically important for the distribution
of the species, resulting in the selected predictors as listed in Table 6

The methods used are based on different approaches and algorithms. These included
a) Bioclim, which uses presence-only data and works with the envelope-style method,
b) GLM, which requires presence and absence or background data, and is based on a
statistical fitting of the data for a theoretical relationship between the appearance of a
species and the environment, and c) MaxEnt which also initially is based on presence-
only data but generates a large number of background points by sampling throughout the
study area in order to characterize the environment. Its aim is to estimate the species’
distribution by maximum entropy and to determine a suitable area. This method is
ranked among the machine learning methods.

For this reason, the predictions of the methods are sometimes very differing in the predic-
tion of the potentially distributed areas. The geographical comparison between MaxEnt
and Bioclim is more consistent than with GLM. In addition, it should be noted that the
modeling is done under the conditions of a climate change. While the training takes place
with the recent climate, the prediction is applied on three different past climates, with
Bioclim always slightly underestimating the range sizes (Hijmans & Graham 2006).

The comparison of AUC values is criticized (Lobo et al. 2007; Peterson et al. 2011;
Jiménez-Valverde 2012) because the weight of commission errors is much lower than
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the weight of omission errors and therefor the AUC is not seen as an appropriate per-
formance measure. In some cases, the comparison is valid after the removal of a bias
in the presence data and the spatial sorting bias (SSB) in the test and training data
(Hijmans & Elith 2017). Additionally, the correlation coefficient is used (Elith et al.
2006) in a statistical comparison, as conducted in this work. A bias can emerge from the
facts that, on the one hand, not all occurrences are reported in the database. On the
other hand, in some regions more occurrences may have been reported due to a more
active reporting community than in other regions. In the AUC comparison in this work,
however, MaxEnt and GLM are closer together and provide better prediction statistics
than Bioclim. This is similar to the findings of Elith et al. (2006). The findings thus
far suggest a weak performance of Bioclim in this case, although it is one of the oldest
methods in the species distribution and is still widely used (Hijmans & Elith 2017).

Another important point is the selection of a threshold. As a result, the methods provide
one value per cell that is within a certain range of values to indicate the probability of
distribution of the respective cell. These values are called raw values and available in
the supplementary data (Holthausen 2018). The threshold is needed to determine the
presence and absence of a species within the study area. Cells below the threshold are
considered as absent while cells above are considered as presence. For the determination
of broader potential habitats lower values have to be chosen. For a comparison of
methods, a more objective value should be used, which is statistically determined during
the evaluation. As seen at Rangifer tarandus in MaxEnt, this can lead to cells with a
very low probability in the raw values not being listed in the end result of presence and
absence.

The developed model determines possible prey production for the Western Mediter-
ranean region for H5, GI11, and H4 during the Late Pleistocene on the basis of climate
data of recent time and the mentioned time slices. The three selected methods differ sig-
nificantly in the approaches of their algorithms and as a result in the scope in which they
project areas of suitable habitats or potential distribution. Even if, as in this work, the
same input data are used, the results of varying methods will always be different. The
determination of a best performing model, which should describe precisely the environ-
ment of a species and project it into other time slices or regions, depends on the objective
and the parameterization. Bioclim is very sensitive to outliers, which generally sets the
species’ environmental tolerance at the most extreme value in the training dataset and
does not allow interactions between the predictor variables. All variables are weighted
equally and in the case of climate changes the results are slightly underestimated. In
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contrast, the methods of machine learning, such as MaxEnt, can identify the highly
complex, nonlinear relationships between a species and the environment, and possibly
model more efficiently complex patterns, leading to even more accurate predictions such
as GLM (Thibaud et al. 2014). The statistics obtained in this work reflect exactly this
statement, and thus from a statistical point of view, MaxEnt in its default regulariza-
tion will be the best choice for predicting the distribution for the selected species in
Late Pleistocene. With a customized model complexity, it may be possible to achieve
even better results in the AUC and counteract an overestimation or underestimation
(Warren & Seifert 2011).

The evaluation of the contribution of environmental variables, which is generated by
MaxEnt, reveals that first of all precipitation is the decisive factor for the distribution of
most species. The next higher determining factor, unlike Hof et al. (2012) specified, is
the altitude, provided by a DEM. Temperature and terrain surface classification as well
as Köppen-Geiger classification have only a moderate contribution to the distribution.

The examined time slices are in the range of the appearance of the anatomically modern
human (Homo sapiens) in the Iberian Peninsula and the demise of the Neanderthals.
This event took place in the transition between Mousterian in the Middle Paleolithic and
Aurignacian in the Upper Paleolithic (Sepulchre et al. 2007; Hoffecker 2009). The
climate at this time is characterized by abrupt changes with alternating periods between
cold and warm and seen as the LGM, especially in the north of the Iberian Peninsula,
earlier than in northern Europe (Moreno et al. 2010).

Up to H4, Neanderthals lived in the Cantabrian Range, followed by either an isolation
period or a migration into the south (Serrano et al. 2015). This led to a disappearance
from the Cantabrian Range of Neanderthals analogous to environmental changes from
closed landscapes to open landscapes and a rapid replacement of the Neanderthals by
the anatomically modern human in the north of the Iberian Peninsula (Garcia Gar-
riga et al. 2012; Maroto et al. 2012). Changes in the ecosystems, which included the
Neanderthals, resulted in a lack of resources that culminated in their decline and par-
tially analog to the extinction of associated fauna. These include in particular Rangifer
tarandus and Capreolus capreolus, which are not specified as equally distributed in all
applied methods, but have largely predicted potential habitat in the northern regions
of the Iberian peninsula (Finlayson 2004; Stewart 2005; Finlayson et al. 2008).
Thus, the anatomically modern human was able to seek refuge during the MIS3 in the
northern Iberian Peninsula (Serrano et al. 2015) and the presence of preferred prey
species favored this to a special degree.
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It turns out, that a niche can be projected into a geographic space to specify the maxi-
mum spatial extent of a species’ geographic range because a species cannot live outside
of the dimensions of its identified niche. Thus, SDM will always involve ENM. The
choice of method and quality should always be dependent on the objective of the mod-
eling, such as the designation of protected areas or the prediction of distributions in the
past and the future. SDMs can be very useful for quick and empirical predictions about
the spatial arrangement of a species. But an association of environmental suitability
predicted from the model with local population density has only a poor relationship
(Tôrres et al. 2012).

It is important to keep in mind that a model is based on a simulated, mathematical
simplification of the data, and will never be entirely show the whole truth, but at least a
fair enough approximation to gain additional insight about the projected time. Any pro-
duced map that can accurately display the results should always be regarded with some
skepticism about the predicted distribution. It should be noted that any prediction that
is provided by a modeling without information on true absences, is only a hypothesis
about similar environments to those of the species being studied, and that these envi-
ronments are likely to be somewhere between the extremes of the existing fundamental
niche and the occupied niche.
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5 Conclusion and Outlook

By dint of the R package dismo (Hijmans et al. 2017) a potential distribution was
modeled for several cold-adapted prey species of Late Pleistocene in the region of the
Western Mediterranean. Particular attention was set on the periods of H5, GI11, and
H4. Towards the end of this period, the demise of Neanderthals and the spread of the
anatomically modern human, Homo sapiens, is observed in the Iberian Peninsula.

Three methods regarding distribution modeling were aplied to model and compare the
results. After evaluating the literature, the statistical analysis, and a visual assessment
of the resulting maps, the method of MaxEnt (Phillips et al. 2006) and the provided
software of the same name (Phillips et al. 2017) is the most worthwhile solution. Max-
Ent is a modern method, which can be configured by setting parameters and easily
addressed using the package dismo.

Although Bioclim (Nix 1986) is a very simple and intuitive method, it uses only presence-
only data. However, the method is very susceptible to overprediction and offers no option
for interactions between the environmental predictor variables. Furthermore, categorical
variables can not be applied for calculations. Bioclim’s primary focus is on modeling
the distribution of a species based on climatic variables and thus assumes that the
distribution of a species is influenced by the climate. However, additional continuous
variables can be used in the algorithm.

The method of GLM, however, accepts categorical variables and is characterized by a
low susceptibility to overfitting. However, there is a certain sensitivity to outliers and
the environmental variables should not possess a high correlation, as this can lead to
false estimations of the potential distribution. In addition, true absence data of the
species or background points are needed for the prediction.

MaxEnt (Phillips et al. 2006), a method from the subject of machine learning, requires
presence-only data for the prediction. Furthermore, categorical variables are accepted,
the interaction between predictor variables is possible and algorithms are used to prevent
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5 Conclusion and Outlook

overfitting. It should be noted that the result is an indication of environmental suitability
and therefore does not equate to a predicted occurrence of other methods.

Based on the results of all the methods applied, a distribution of the selected prey species
in the Western Mediterranean region is observed throughout all time slices. However,
despite proven climate variability, the distribution of most species is subject to minor
changes in the extent throughout the time. Therefore, modeling results support the
presence of Neanderthals and anatomically modern humans, which hunted on these
animals, during the Late Pleistocene in the Western Mediterranean. However, it must
be pointed out that the reliability of each prediction depends strongly on the quality
and quantity of the occurrence data and environmental variables used. For example,
the data used by the GBIF Secretariat (2017) have several uncertainties and the climate
data used, both for recent and past conditions, is based on models at different stages
of development. Furthermore, models can not estimate the full potential distributional
area and a region is designated as suitable, which may be smaller than the potential of
the species actually allows.

For future modeling, the use of verified, dated, and georeferenced finding spots is rec-
ommended in order to evaluate the results statistically, which was not possible here.
In this work, only the evaluation of the training of the respective methods could be
performed. Further research should determine the best performing quantity of finding
spots to obtain a consistent prediction. Furthermore, it is recommended to specialize
in one method depending on the initial position and the objective. This includes defin-
ing the optimal configuration to avoid overfitting and determining a uniform rule for
selecting the threshold in order to display presence/absence results. The value depends
on the extent of a potential distribution area to be specified. Also recommended is to
perform an evaluation of the new, initially mentioned methods for single-season, multi-
season and dynamic occupancy models with detection-only and detection/nondetection
data (Chapter 2), which were not content of this work.
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